Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A. 2007;104:18866–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlesinger WH, Jasechko S. Transpiration in the global water cycle. Agr Forest Meteorol. 2014;189–190:115–7.
Article
Google Scholar
Jones H. Stomatal control of photosynthesis and transpiration. J Exp Bot. 1998;49:387–98.
Article
Google Scholar
Chapin FS, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology. New York: Springer; 2002.
Google Scholar
Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science. 1997;275:502–9.
Article
CAS
PubMed
Google Scholar
Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology. 1994;75:134–50.
Article
Google Scholar
Resco V, Hartwell J, Hall A. Ecological implications of plants' ability to tell the time. Ecol Lett. 2009;12:583–92.
Article
PubMed
Google Scholar
Mencuccini M, Mambelli S, Comstock J. Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgaris L.) is a function of time of day. Plant Cell Environ. 2000;23:1109–18.
Article
Google Scholar
Hubbard KE, Webb AAR. Circadian rhythms in stomata: Physiological and molecular aspects. In: Mancuso S, Shabala S, editors. Rhythms in Plants. Switzerland: Springer International Publishing; 2015. p. 231–55.
Chapter
Google Scholar
Paul MJ, Pellny TK. Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot. 2003;54:539–47.
Article
CAS
PubMed
Google Scholar
Webb AAR. The physiology of circadian rhythms in plants. New Phytol. 2003;160:281–303.
Article
CAS
Google Scholar
Salmela MJ, Greenham K, Lou P, McClung CR, Ewers BE, Weinig C. Variation in circadian rhythms is maintained among and within populations in Boechera stricta. Plant Cell Environ. 2016;39:1293–303.
Article
CAS
PubMed
Google Scholar
Ehleringer JR, Field CB. Scaling physiological processes. San Diego: Academic; 1993.
Google Scholar
Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Change Biol. 2010;16:187–208.
Article
Google Scholar
Williams M, Rastetter EB, Van der Pol L, Shaver GR. Arctic canopy photosynthetic efficiency enhanced under diffuse light, linked to a reduction in the fraction of the canopy in deep shade. New Phytol. 2014;202:1267–76.
Article
PubMed
Google Scholar
Dietze MC. Gaps in knowledge and data driving uncertainty in models of photosynthesis. Photosynth Res. 2014;119:3–14.
Article
CAS
PubMed
Google Scholar
Stoy PC, Trowbridge AM, Bauerle WL. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod. Photosynth Res. 2014;119:49–64.
Article
CAS
PubMed
Google Scholar
Resco de Dios V, Goulden ML, Ogle K, Richardson AD, Hollinger DY, Davidson EA, et al. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Glob Change Biol. 2012;18:1956–70.
Article
Google Scholar
Doughty C, Goulden ML, Miller S, da Rocha H. Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest. Geophys Res Lett. 2006;33:L15404.
Article
Google Scholar
Resco de Dios V, Diaz-Sierra R, Goulden ML, Barton CV, Boer MM, Gessler A, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus. New Phytol. 2013;200:743–52.
Article
PubMed
Google Scholar
Resco de Dios V, Roy J, Ferrio JP, Alday JG, Landais D, Milcu A, et al. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Sci Rep. 2015;5:10975.
Article
Google Scholar
Williams WE, Gorton HL. Circadian rhythms have insignificant effects on plant gas exchange under field conditions. Physiol Plantarum. 1998;103:247–56.
Article
CAS
Google Scholar
Roy J, Picon-Cochard C, Augusti A, Benot M-L, Thiery L, Darsonville O, et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc Natl Acad Sci U S A. 2016;113:6224–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood SN. Generalized Additive Models: An Introduction. R. Boca Raton: Chapman & Hall/CRC; 2006.
Google Scholar
Milcu A, Roscher C, Gessler A, Bachmann D, Gockele A, Guderle M, et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol Lett. 2014;17:435–44.
Article
PubMed
Google Scholar
Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Secaucus: Springer; 2000.
Book
Google Scholar
Curtis CJ, Simpson GL. Trends in bulk deposition of acidity in the UK, 1988–2007, assessed using additive models. Ecol Indic. 2014;37:274–86.
Article
CAS
Google Scholar
Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol;2011;17:2134–2144.
Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995;18:339–55.
Article
CAS
Google Scholar
Ball TJ, Woodrow IE, Berry JA. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, editor. Progress in Photosynthesis Research, vol. 4. Dordrecht: Martinus Nijhoff; 1987. p. 221–4.
Chapter
Google Scholar
Wagenmakers E-J, Farrell S. AIC model selection using Akaike weights. Psychon Bull Rev. 2004;11:192–6.
Article
PubMed
Google Scholar
Burnham KP, Anderson DR. Model Selection and Multi/Model Inference: A Practical Information-Theoretic Approach. New York: Springer; 2002.
Google Scholar
Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH. Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Change Biol. 2007;13:788–803.
Article
Google Scholar
Jones H. Plants and microclimate: a quantitative approach to environmental plant physiology. 3rd ed. Cambridge: Cambridge University Press; 2014.
Google Scholar
Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, et al. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis. J Geophys Res. 2010;115:G00H05.
Azcón-Bieto J. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol. 1983;73:681–6.
Article
PubMed
PubMed Central
Google Scholar
Müller LM, von Korff M, Davis SJ. Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J Exp Bot. 2014;65:2915–23.
Article
PubMed
Google Scholar
Duursma RA, Barton CVM, Lin Y-S, Medlyn BE, Eamus D, Tissue DT, et al. The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agr Forest Meteorol. 2014;189–190:2–10.
Article
Google Scholar
Beaulé C. Aschoff's Rules. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of Neuroscience. Berlin: Springer; 2009. p. 190–3.
Chapter
Google Scholar
Zhang Q, Manzoni S, Katul G, Porporato A, Yang D. The hysteretic evapotranspiration—Vapor pressure deficit relation. J Geophys Res. 2014;119:2013JG002484.
Google Scholar
Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ. 2003;26:1097–116.
Article
Google Scholar
O'Grady AP, Eamus D, Hutley LB. Transpiration increases during the dry season: Patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiol. 1999;19:591–7.
Article
PubMed
Google Scholar
Marenco RA, Siebke K, Farquhar GD, Ball MC. Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum. Funct Plant Biol. 2006;33:1103–13.
Article
Google Scholar
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. Photosynth Res. 2014;119:181–90.
Article
CAS
PubMed
Google Scholar
Dodd AN, Parkinson K, Webb AAR. Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis. New Phytol. 2004;162:63–70.
Article
Google Scholar
Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AA. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature. 2013;502:689–92.
Article
CAS
PubMed
Google Scholar
Holm K, Källman T, Gyllenstrand N, Hedman H, Lagercrantz U. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol. 2010;10:109.
Article
PubMed
PubMed Central
Google Scholar
Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, et al. Quantifying ecological memory in plant and ecosystem processes. Ecol Lett. 2015;18:221–35.
Article
PubMed
Google Scholar
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv. 2016;2:e1501340.
Article
PubMed
PubMed Central
Google Scholar
Resco De Dios V, Loik ME, Smith RA, Aspinwall MJ, Tissue DT. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances plant fitness. Plant Cell Environ. 2016;39:3–11.
Article
CAS
PubMed
Google Scholar
Herrmann S, Recht S, Boenn M, Feldhahn L, Angay O, Fleischmann F, et al. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. J Exp Bot. 2015;66:7113–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graf A, Schlereth A, Stitt M, Smith AM. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci USA. 2010;107:9458–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munger L, Bleiholder H, Hack H, Hess M, Stauss R, Boom TVD, et al. Phenological growth stages of the peanut plant (Arachis hypogaea L.) Codification and description according to the BBCH Scale – with figures. J Agron Crop Sci. 1998;180:101–7.
Article
Google Scholar
Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, et al. Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenbl Deut Pflanzenschutzd. 1995;47:217–32.
Google Scholar
Resco de Dios V, Gessler A, Ferrio JP, Alday JG, Bahn M, del Castillo J, et al. Supporting data for "Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions". 2016. GigaScience Database http://dx.doi.org/10.5524/100244
Hennessey T, Freeden A, Field C. Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta. 1993;189:369–76.
Article
CAS
PubMed
Google Scholar