Bouchet P, Kantor YI, Sysoev A, Puillandre N. A new operational classification of the conoidea (Gastropoda). J Molluscan Stud. 2011;77:273–308.
Article
Google Scholar
Modica MV, Holford M. The Neogastropoda: evolutionary innovations of predatory marine snails with remarkable pharmacological potential. In: Pontarotti P, editor. Evolutionary Biology - Concepts, Molecular and Morphological Evolution. Heidelberg: Springer; 2010. p. 249–70.
Chapter
Google Scholar
Olivera BM. Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology. Mol Biol Cell. 1997;8:2101–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Röckel D, Korn W, Kohn AJ. Manual of the living Conidae. Wiesbaden: Verlag Christa Hemmen; 1995.
Google Scholar
Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, Lavergne V, et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014;5:3521.
PubMed
PubMed Central
Google Scholar
Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev. 2004;84:41–68.
Article
CAS
PubMed
Google Scholar
Kohn AJ. The ecology of Conus in Hawaii. Ecol Monogr. 1959;29:47–90.
Article
Google Scholar
Duda Jr TF, Kohn AJ. Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Mol Phylogenet Evol. 2005;34:257–72.
Article
PubMed
Google Scholar
Endean R, Duchemin C. The venom apparatus of Conus magus. Toxicon. 1967;4:275–84.
Article
CAS
PubMed
Google Scholar
Salisbury SM, Martin GG, Kier WM, Schulz JR. Venom kinematics during prey capture in Conus: the biomechanics of a rapid injection system. J Exp Biol. 2010;213:673–82.
Article
PubMed
Google Scholar
Schulz JR, Norton AG, Gilly WF. The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol Bull. 2004;207:77–9.
Article
PubMed
Google Scholar
Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus venom peptide pharmacology. Pharmacol Rev. 2012;64:259–98.
Article
CAS
PubMed
Google Scholar
Olivera BM, Cruz LJ. Conotoxins, in retrospect. Toxicon. 2001;39:7–14.
Article
CAS
PubMed
Google Scholar
Norton RS, Olivera BM. Conotoxins down under. Toxicon. 2006;48:780–98.
Article
CAS
PubMed
Google Scholar
England LJ, Imperial J, Jacobsen R, Craig AG, Gulyas J, Akhtar M, et al. Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science. 1998;281:575–8.
Article
CAS
PubMed
Google Scholar
Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, et al. Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat Neurosci. 2001;4:902–7.
Article
CAS
PubMed
Google Scholar
McIntosh JM, Santos AD, Olivera BM. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu Rev Biochem. 1999;68:59–88.
Article
CAS
PubMed
Google Scholar
Olivera BM. Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem. 2006;281:31173–7.
Article
CAS
PubMed
Google Scholar
Jones RM, Bulaj G. Conotoxins - new vistas for peptide therapeutics. Curr Pharm Des. 2000;6:1249–85.
Article
CAS
PubMed
Google Scholar
Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790–802.
Article
CAS
PubMed
Google Scholar
Layer RT, McIntosh JM. Conotoxins: therapeutic potential and application. Mar Drugs. 2006;4:119–42.
Article
CAS
PubMed Central
Google Scholar
Carstens BB, Clark RJ, Daly NL, Harvey PJ, Kaas Q, Craik DJ. Engineering of conotoxins for the treatment of pain. Curr Pharm Des. 2011;17:4242–53.
Article
CAS
PubMed
Google Scholar
Lewis RJ. Conotoxin venom peptide therapeutics. Adv Exp Med Biol. 2009;655:44–8.
Article
CAS
PubMed
Google Scholar
Gayler K, Sandall D, Greening D, Keays D, Polidano M, Livett B, et al. Molecular prospecting for drugs from the sea. Isolating therapeutic peptides and proteins from cone snail venom. IEEE Eng Med Biol Mag. 2005;24:79–84.
Article
PubMed
Google Scholar
Halai R, Craik DJ. Conotoxins: natural product drug leads. Nat Prod Rep. 2009;26:526–36.
Article
CAS
PubMed
Google Scholar
Leary D, Vierros M, Hamon G, Arico S, Monagle C. Marine genetic resources: a review of scientific and commercial interest. Mar Policy. 2009;33:183–94.
Article
Google Scholar
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8:69–85.
Article
CAS
PubMed
Google Scholar
Han TS, Teichert RW, Olivera BM, Bulaj G. Conus venoms - a rich source of peptide-based therapeutics. Curr Pharm Des. 2008;14:2462–79.
Article
CAS
PubMed
Google Scholar
Lewis RJ. Discovery and development of the chi-conopeptide class of analgesic peptides. Toxicon. 2012;59:524–8.
Article
CAS
PubMed
Google Scholar
Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11:3029–40.
Article
CAS
PubMed
Google Scholar
Lynch SS, Cheng CM, Yee JL. Intrathecal ziconotide for refractory chronic pain. Ann Pharmacother. 2006;40:1293–300.
Article
CAS
PubMed
Google Scholar
McGivern JG. Ziconotide. A review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3:69–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
McIntosh JM, Jones RM. Cone venom--from accidental stings to deliberate injection. Toxicon. 2001;39:1447–51.
Article
CAS
PubMed
Google Scholar
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469–84.
Article
CAS
PubMed
Google Scholar
Olivera BM, Teichert RW. Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv. 2007;7:251–60.
Article
CAS
PubMed
Google Scholar
Wang CZ, Chi CW. Conus peptides--a rich pharmaceutical treasure. Acta Biochim Biophys Sin Shanghai. 2004;36:713–23.
Article
CAS
PubMed
Google Scholar
Azam L, Dowell C, Watkins M, Stitzel JA, Olivera BM, McIntosh JM. Alpha-conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. J Biol Chem. 2005;280:80–7.
Article
CAS
PubMed
Google Scholar
Woodward SR, Cruz LJ, Olivera BM, Hillyard DR. Constant and hypervariable regions in conotoxin propeptides. EMBO J. 1990;9:1015–20.
CAS
PubMed
PubMed Central
Google Scholar
Olivera BM, Walker C, Cartier GE, Hooper D, Santos AD, Schoenfeld R, et al. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann N Y Acad Sci. 1999;870:223–37.
Article
CAS
PubMed
Google Scholar
Kaas Q, Westermann JC, Craik DJ. Conopeptide characterization and classifications: An analysis using ConoServer. Toxicon. 2010;55:1491–509.
Article
CAS
PubMed
Google Scholar
Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ. ConoServer, a database for conopeptide sequences and structures. Bioinformatics. 2008;24:445–6.
Article
CAS
PubMed
Google Scholar
Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012;40:D325–30. doi:10.1093/nar/gkr886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puillandre N, Koua D, Favreau P, Olivera BM, Stocklin R. Molecular phylogeny, classification and evolution of conopeptides. J Mol Biol. 2012;74:297–309.
CAS
Google Scholar
Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics. 2013;12:312–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo S, Christensen S, Zhangsun D, Wu Y, Hu Y, Zhu X, et al. A novel inhibitor of alpha9alpha10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily. PLoS ONE. 2013;8:e54648. doi:10.1371/journal.pone.0054648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar MB, Ortiz E, Kaas Q, Lopez-Vera E, Becerril B, Possani LD, et al. Precursor De13.1 from Conus delessertii defines the novel G gene superfamily. Peptides. 2013;41:17–20.
Article
CAS
PubMed
Google Scholar
Ye M, Khoo KK, Xu S, Zhou M, Boonyalai N, Perugini MA, et al. A helical conotoxin from Conus imperialis has a novel cysteine framework and defines a new superfamily. J Biol Chem. 2012;287:14973–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espiritu DJ, Watkins M, Dia-Monje V, Cartier GE, Cruz LJ, Olivera BM. Venomous cone snails: molecular phylogeny and the generation of toxin diversity. Toxicon. 2001;39:1899–916.
Article
CAS
PubMed
Google Scholar
Biggs JS, Watkins M, Puillandre N, Ownby JP, Lopez-Vera E, Christensen S, et al. Evolution of Conus peptide toxins: analysis of Conus californicus Reeve, 1844. Mol Phylogenet Evol. 2010;56:1–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernáldez J, Román-González SA, Martínez O, Jiménez S, Vivas O, Arenas I, et al. A Conus regularis conotoxin with a novel eight-cysteine framework inhibits CaV2.2 channels and displays an anti-nociceptive activity. Mar Drugs. 2013;11:1188–202.
Article
PubMed
PubMed Central
Google Scholar
Safavi-Hemami H, Young ND, Williamson NA, Purcell AW. Proteomic interrogation of venom delivery in marine cone snails: novel insights into the role of the venom bulb. J Proteome Res. 2010;9:5610–9.
Article
CAS
PubMed
Google Scholar
Marshall J, Kelley WP, Rubakhin SS, Bingham JP, Sweedler JV, Gilly WF. Anatomical correlates of venom production in Conus californicus. Biol Bull. 2002;203:27–41.
Article
PubMed
Google Scholar
Hu H, Bandyopadhyay P, Olivera B, Yandell M. Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct. BMC Genomics. 2012;13:284. doi:10.1186/1471-2164-13-284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biass D, Dutertre S, Gerbault A, Menou JL, Offord R, Favreau P, et al. Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteomics. 2009;72:210–8.
Article
CAS
PubMed
Google Scholar
Davis J, Jones A, Lewis RJ. Remarkable inter- and intraspecies complexity of conotoxins revealed by LC/MS. Peptides. 2009;30:1222–7.
Article
CAS
PubMed
Google Scholar
Prashanth JR, Lewis RJ, Dutertre S. Towards an integrated venomics approach for accelerated conopeptide discovery. Toxicon. 2012;60:470–7.
Article
CAS
PubMed
Google Scholar
Hu H, Bandyopadhyay PK, Olivera BM, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics. 2011;12:60. doi:10.1186/1471-2164-12-60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lluisma AO, Milash BA, Moore B, Olivera BM, Bandyopadhyay PK. Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome. Mar Genomics. 2012;5:43–51.
Article
PubMed
PubMed Central
Google Scholar
Terrat Y, Biass D, Dutertre S, Favreau P, Remm M, Stocklin R, et al. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors. Toxicon. 2012;59:34–46.
Article
CAS
PubMed
Google Scholar
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes. Genome Biol Evol. 2015;7:1797–814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Himaya SWA, Jin AH, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, et al. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus. J Proteome Res. 2015;14:4372–81.
Article
CAS
PubMed
Google Scholar
Lavergne V, Harliwong I, Jones A, Miller D, Taft RJ, Alewood PF. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc Natl Acad Sci U S A. 2015;112:E3782–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohn AJ, Perron FE. Life History and Biogeography: Patterns in Conus. Oxford: Clarendon Press; 1994.
Google Scholar
Jin AH, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, et al. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteomics. 2013;12:3824–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660–6.
Article
CAS
PubMed
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19:651–2.
Article
CAS
PubMed
Google Scholar
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watkins M, Olivera BM, Hillyard DR, McIntosh JM, Jones RM. Alpha-conotoxin peptides. 2002. Patent: JP 2002534996-A 11 22-OCT-2002.
Google Scholar
McIntosh JM, Plazas PV, Watkins M, Gomez-Casati ME, Olivera BM, Elgoyhen AB. A novel alpha-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between rat alpha9alpha10 and alpha7 nicotinic cholinergic receptors. J Biol Chem. 2005;280:30107–12.
Article
CAS
PubMed
Google Scholar
Zhou M, Wang L, Wu Y, Zhu X, Feng Y, Chen Z, et al. Characterizing the evolution and functions of the M-superfamily conotoxins. Toxicon. 2013;76:150–9.
Article
CAS
PubMed
Google Scholar
Yuan DD, Han YH, Wang CG, Chi CW. From the identification of gene organization of alpha conotoxins to the cloning of novel toxins. Toxicon. 2007;49:1135–49.
Article
CAS
PubMed
Google Scholar
Pi C, Liu J, Peng C, Liu Y, Jiang X, Zhao Y, et al. Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus. Genomics. 2006;88:809–19.
Article
CAS
PubMed
Google Scholar
Robinson SD, Safavi-Hemami H, McIntosh LD, Purcell AW, Norton RS, Papenfuss AT. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS ONE. 2014;9:e87648. doi:10.1371/journal.pone.0087648.
Article
PubMed
PubMed Central
Google Scholar
Pi C, Liu Y, Peng C, Jiang X, Liu J, Xu B, et al. Analysis of expressed sequence tags from the venom ducts of Conus striatus: focusing on the expression profile of conotoxins. Biochimie. 2006;88:131–40.
Article
CAS
PubMed
Google Scholar
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. High Conopeptide Diversity in Conus tribblei Revealed Through Analysis of Venom Duct Transcriptome Using Two High-Throughput Sequencing Platforms. Mar Biotechnol (NY). 2015;17:81–98.
Article
CAS
Google Scholar
Lavergne V, Dutertre S, Jin AH, Lewis RJ, Taft RJ, Alewood PF. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genomics. 2013;14:708. doi:10.1186/1471-2164-14-708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR. Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol. 2005;208:2873–83.
Article
CAS
PubMed
Google Scholar
Rivera-Ortiz JA, Cano H, Marí F. Intraspecies variability and conopeptide profiling of the injected venom of Conus ermineus. Peptides. 2011;32:306–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dutertre S, Biass D, Stocklin R, Favreau P. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon. 2010;55:1453–62.
Article
CAS
PubMed
Google Scholar
Romeo C, Di Francesco L, Oliverio M, Palazzo P, Massilia GR, Ascenzi P, et al. Conus ventricosus venom peptides profiling by HPLC-MS: a new insight in the intraspecific variation. J Sep Sci. 2008;31:488–98.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Laht S, Koua D, Kaplinski L, Lisacek F, Stöcklin R, Remm M. Identification and classification of conopeptides using profile Hidden Markov Models. Biochim Biophys Acta. 2012;1824:488–92.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Peng C, Yao G, Gao B, Fan C, Bian C, Wang J, Cao Y, Wen B, Zhu Y, Ruan Z, Zhao X, You X, Bai J, Li J, Lin Z, Zou S, Zhang X, Qiu Y, Chen J, Coon SL, Yang J, Chen J, Shi Q. Supporting material for “High throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing”. GigaScience Database. 2016; http://dx.doi.org/10.5524/100169