Narechania et al. GigaScience (2016) 5:44
DOI 10.1186/s13742-016-0152-3

Clusterflock: a flocking algorithm for

GigaScience

@ CrossMark

isolating congruent phylogenomic datasets

Apurva Narechania', Richard Baker', Rob DeSalle', Barun Mathema??, Sergios-Orestis Kolokotronis'”,

Barry Kreiswirth? and Paul J. Planet'*"

Abstract

Background: Collective animal behavior, such as the flocking of birds or the shoaling of fish, has inspired a class of
algorithms designed to optimize distance-based clusters in various applications, including document analysis and
DNA microarrays. In a flocking model, individual agents respond only to their immediate environment and move
according to a few simple rules. After several iterations the agents self-organize, and clusters emerge without the
need for partitional seeds. In addition to its unsupervised nature, flocking offers several computational advantages,
including the potential to reduce the number of required comparisons.

Findings: In the tool presented here, Clusterflock, we have implemented a flocking algorithm designed to locate
groups (flocks) of orthologous gene families (OGFs) that share an evolutionary history. Pairwise distances that
measure phylogenetic incongruence between OGFs guide flock formation. We tested this approach on several
simulated datasets by varying the number of underlying topologies, the proportion of missing data, and
evolutionary rates, and show that in datasets containing high levels of missing data and rate heterogeneity,
Clusterflock outperforms other well-established clustering techniques. We also verified its utility on a known,
large-scale recombination event in Staphylococcus aureus. By isolating sets of OGFs with divergent phylogenetic
signals, we were able to pinpoint the recombined region without forcing a pre-determined number of groupings

or defining a pre-determined incongruence threshold.

Conclusions: Clusterflock is an open-source tool that can be used to discover horizontally transferred genes,
recombined areas of chromosomes, and the phylogenetic ‘core’ of a genome. Although we used it here in an
evolutionary context, it is generalizable to any clustering problem. Users can write extensions to calculate any
distance metric on the unit interval, and can use these distances to flock” any type of data.

Keywords: Swarms, Flocking algorithm, Unsupervised clustering, Data mining, Horizontal gene transfer,

Recombination, Staphylococcus aureus

Background

Swarm intelligence describes cooperative behavior
that results from a group of agents executing simple
behavioral programs. The agents themselves are
unsophisticated, but patterns emerge from the accu-
mulation of pairwise interactions that help accom-
plish complex tasks necessary for the group’s

* Correspondence: planetp@email.chop.edu

'Sackler Institute for Comparative Genomics, American Museum of Natural
History, New York, NY 10024, USA

3Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s
Hospital of Philadelphia & University of Pennsylvania, Philadelphia, PA 19104,
USA

Full list of author information is available at the end of the article

(BioMed Central

survival [1]. Swarms are by definition leaderless, and
agents therein are given no internal or external
direction. Ant colonies, swarms of bees, shoals of
fish, and flocks of birds all demonstrate this kind of
behavior [2-5].

Because there is no central control, algorithms modeled
on swarm intelligence excel at data-mining tasks where the
goal is the discovery of unknown patterns in data. Early
models of this type of behavior invoked the n-body prob-
lem in physics concerning the motion of celestial objects
[6]. Later work integrated biological observations into this
problem, particularly the importance of local information
in determining global patterns of behavior [7-10]. The
Reynolds flocking model [11] is one such example, designed

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-016-0152-3&domain=pdf
mailto:planetp@email.chop.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Narechania et al. GigaScience (2016) 5:44

specifically to simulate the characteristics of the coherent
behavior of a flock of birds. Reynolds’ original goal was to
bestow life-like animation on particles, which he termed
“boids,” in motion pictures. In Reynolds’ flocking model,
each boid in a simulation is a clone of every other; boids
heed only their immediate surroundings as delimited by a
radius of perception. They react to flockmates within this
radius using a small library of simple behaviors that ultim-
ately result in synchrony within the entire group. If boids
are assigned bits of information, and if distances between
these bits of information are easily computed, the flocking
algorithm becomes suitable for unsupervised clustering.

In this study, we present Clusterflock, a method that
aims to isolate groups (flocks) of genes with congruent
historical signals. In our technique, boids represent
orthologous gene families (OGFs), and the distance be-
tween them is measured as a simple test of phylogenetic
congruence [12].

Phylogenetic incongruence is rampant in the evolution-
ary history of genes across most organisms in the tree of
life [13—-16], but the problem is particularly severe among
bacterial genomes, where evolution proceeds through
multiple mechanisms that destroy phylogenetic signals,
such as recombination, de novo gene acquisition, and loss
and duplication [17]. A central problem in microbial evo-
lutionary biology is distinguishing these non-vertical
mechanisms and separating vertical signals from horizon-
tal ones produced by recombination and gene transfer.
Whole genomes consist of thousands of genes with po-
tentially varying histories, hence magnifying the analyt-
ical and computational complexity of this problem [18,
19]. The number of recombination events and the rates
of gene transfer are often not known, and the inclusion
of genes with different histories in the same analysis can
lead to bias and error in phylogenetic trees. This kind of
error is especially problematic in cases of large-scale re-
combination or sustained/concerted gene transfer be-
tween organisms that occupy the same habitat [20],
situations that can lead to strong support for incorrect
hypotheses.

A few algorithms have been proposed to address this
phylogenetic problem in large whole-genome datasets.
In general, such approaches rely on a two-step proced-
ure: pairwise tests of phylogenetic incongruence between
OGFs, followed by clustering to segregate the OGFs into
congruent groups. A range of initial incongruence tests
have been used, including such character-based incon-
gruence measures as incongruence length difference
(e.g., mILD [19]) and the likelihood ratio test (e.g., CON-
CATERPILLAR [21]), as well as topological measures
(e.g., Conclustador [18]). For the clustering step, CON-
CATERPILLAR and mILD use agglomerative, hierarchical
clustering techniques, whereas Conclustador uses k-
means and spectral clustering algorithms. Hierarchical

clustering techniques generally require a threshold value
that defines the boundaries of groups, an assumption that
can introduce bias or error. Spectral clustering, as imple-
mented in Conclustador, and k-means algorithms require
the prior estimation or specification of the number of
clusters, which can lead to erroneous lumping or splitting.
By contrast, Clusterflock does not require prior specifica-
tion of distance thresholds or the number of groups.

We use incongruence length difference (ILD) in our ana-
lysis of the Clusterflock algorithm, but the algorithm can
also be used with the likelihood ratio test or the topological
incongruence measure in Conclustador [18]. Indeed, the
flocking algorithm can cluster anything, given precalculated
pairwise distances between all pairs of entities. In this study,
we tested the flocking model against other clustering algo-
rithms, such as multidimensional scaling (MDS), hierarch-
ical clustering, and partitioning around medoids (PAM). In
order to establish its use in practice, we used Clusterflock
to analyze a well-studied example of massive genome re-
combination in Staphylococcus aureus clonal group ST239,
involving nearly 20 % of the chromosome [22]. As in many
phylogenomic datasets, large amounts of data were missing
from the staphylococcal genomes that we analyzed, a cir-
cumstance that often limits the effectiveness of clustering
algorithms [18]. While other techniques failed to segregate
the recombined region of the ST239 genome, Clusterflock
successfully distinguished the recombined genes from those
in the recipient genome. We explored this resilience against
missing data and rate heterogeneity through simulation
analysis.

Implementation

Reynolds’ original algorithm and our modifications to it
are shown in Fig. 1. At the outset, agents (boids in the
simulation) were assigned a random position and vel-
ocity in a two-dimensional field, normally set at one
particle per square unit. Agents were then allowed to
interact with one another. In the classic approach, each
entity is influenced only by its local environment as
given by a user-defined radius. For each agent, flock-
mates within this radius influence the calculation of
three steering vectors that combine to alter the particle’s
velocity: Alignment, Cohesion, and Separation. Agents
tend to head in the average direction of their flockmates
(alignment), move toward their average position (cohe-
sion), and avoid crowding one another (separation). To
accelerate the formation of flocks, we added Repulsion
as a fourth vector, and designed it to operate between
each agent’s field of vision (radius) and its radius of sep-
aration. In a clustering context, repulsion quickly sepa-
rates agents with high relative distances, seeding flocks
at an early point in the simulation. The calculation of
the four vectors was iterated over all agents in the sys-
tem for a user-defined number of frames.

Narechania et al. GigaScience (2016) 5:44

Alignment Repulsion

A

Cohesion Separation

71 YN

~
\‘: A
: e
» & 2

Fig. 1 Flocking algorithm and rules. Agents (boids) are shown as
triangles, interactions as dashed lines, and the radius of perception as
differently colored circles depending on the vector considered.
Alignment and cohesion reinforce flocking behavior while repulsion
disrupts it. In alignment (green), a boid will adjust its trajectory to
match congruent flockmates. In cohesion (green), a given boid
moves toward the center of mass of all congruent flockmates within
its field of vision. In separation (yellow), all boids maintain a
minimum distance from one another regardless of whether they are
congruent or incongruent. Cohesion, alignment, and separation are
the core forces in Reynolds' original flocking algorithm. We have
added repulsion (red) which operates between an agent’s field of
vision and the smaller, concentric circle describing its radius of
separation. The magnitudes of alignment, cohesion, and repulsion
are a function of the phylogenetic distance between the agents as
described in the implementation

In our adaptation, each particle was a set of aligned
gene sequences (i.e., a phylogenetic matrix of an OGE),
and each interaction triggered a measurement (or a hash
table lookup) of phylogenetic congruence between align-
ments in the pair. We modeled our congruence metric
after the incongruence length difference (ILD) [23]:

LD = LA+B_(LA +L3)

Lays

where L,,p is the length of the Maximum Parsimony
(MP) tree calculated when the two gene alignments were
combined (i.e., concatenated), and L, and Ly are the
lengths of the trees calculated separately for each gene.
An LD of zero indicated complete congruence (i.e., the
gene trees were identical), whereas a positive LD indi-
cated that the two OGFs had divergent phylogenetic top-
ologies. To function as a distance metric on the unit
interval, LD was normalized and, therefore, scaled be-
tween zero and one. We calculated single-gene parsi-
mony trees and concatenated trees in PAUP* [24] using
100 heuristic searches, with random sequence addition,
and tree bisection and reconnection.

Unlike other implementations [25, 26] we used the LD
metric directly in our formulation of the steering

vectors. This allowed the distance between any two
OGFs to have a continuous effect on the simulation.
More specifically, alignment and cohesion were calcu-
lated as the average velocity and position, respectively, of
all flockmates within the field-of-view of any given agent
(Fig. 1). This average was then modulated by two factors:
the average LD of all flockmates, and a user-defined di-
minishment factor. The equation for alignment is as
follows:

n
1
Lo LR LD
X

v = —vao D

X

where v is velocity driven by alignment, # is the number
of flockmates, v, is the velocity of flockmate x, LD, is
the LD for flockmate x, and D is the diminishment fac-
tor. In this scenario, as the average LD increased, the
alignment or cohesion effect decreased. Similarly, as the
diminishment factor increased, the alignment or cohe-
sion effect decreased. The diminishment factor was
intended as a layer of control, in order to provide the
user the opportunity to up-weight or down-weight the
alignment and/or cohesion vectors.

Separation and repulsion were treated somewhat dif-
ferently, and were instead calculated through iterative
displacement. Each agent within the separation distance
updated the separation vector in turn in an attempt to
double the distance between itself and its counterpart:

v = v-(Py-P) V{1, ..,n}

where v is velocity driven by separation, and P and P,
are the positions of the agent in question and its flock-
mate x, respectively. Repulsion is enhanced separation
that operates between the separation distance and the
perception radius. It is directly proportional to the LD of
flockmate X and a user-defined enhancement factor:

v = v—((Px—P) x (LD,E)) V{1, ..,n}

where LD, is LD for flockmate x, and E is the enhance-
ment factor. In this formulation, if the LD between any
two OGFs was zero, the repulsion effect vanished. For
positive LDs, repulsion was positive and proportional to
the magnitude of the incongruence calculated. Increas-
ing the enhancement factor could considerably magnify
any existing repulsion.

The sum of the velocities derived from the cohesion,
alignment, and separation/repulsion rules encodes the
evolutionary distance information between an active
agent and all its flockmates. When summed across all
agents over all iterations, the OGFs converged on mul-
tiple evolutionary solutions, and the final frame of the
simulation often isolated all congruent clusters. Figure 2

Narechania et al. GigaScience (2016) 5:44

250 500 1000

Fig. 2 Snapshots from a Staphylococcus aureus simulation. Here, we
show three early snapshots (1, 5, and 10) and three taken at intervals
along a 1000-frame flocking simulation (250, 500, and 1000). Agents
in green represent genes from the recombined region, whereas
those in red are from the core genome. Specific parameters chosen
here included: DIMENSIONS = 2500, BOUNDARY =1, INIT_VELOCITY
=50, COHESION_FACTOR = 5, SEPARATION_DISTANCE = 5, REPEL _-
FACTOR =10, ALIGNMENT_FACTOR = 5, ITERATIONS = 1000, RADIUS
=500, VELOCITY_LIMIT = 50, MINPTS = 20, XI=0.15

captures snapshots of this process. Seed clusters formed
very early, and later moved to intercept one another.
Congruent flocks absorbed, while incongruent flocks re-
pelled, one another.

Clusterflock is a parameter-rich approach that allows
the user fine-grained control over the steering of OGFs
within the virtual space. In addition to the cohesion, align-
ment, and repulsion factors outlined here, other key pa-
rameters include the length of the virtual square that
serves as the flight space, the radius of awareness about
each agent, the initial velocity, the velocity limit, and the
number of iterations. We found that a gene per square
unit and a radial awareness of 10 % of the length of the
flight space were sufficient to encourage efficient flock for-
mation in most cases. Because velocity can increase
quickly if left uncapped, limiting it to 2 % of the length of
the virtual square was usually adequate for circulation.

In its original form, the algorithmic complexity of
flocking was O(%). Each agent must spatially assess all
other agents to determine the ones in its field of view
(radius). We reduced this complexity by borrowing two
heuristics, one from the world of videogames, and an-
other from nature. In videogames requiring real-time
calculation of the interactions among many particles, a
spatial hashing structure [27, 28] reduces the number of
required comparisons by binning particles into a discrete
number of cells. Agents are sorted by their location, and
only those in cells immediately surrounding the query
are processed. In practice, the most significant savings
attained by spatial hashing are accrued early in a simula-
tion, when agents are evenly dispersed. As flocks begin

to form, some cells are completely bereft, whereas others
can contain thousands of congruent OGFs.

A more even and lasting heuristic is awareness. In na-
ture, a member of a flock will not necessarily respond to
all its immediate flockmates [10, 29]. Often, it responds to
a mere subset, an approximation that rarely leads to un-
wanted perturbations or collisions because of the cumula-
tive, emergent nature of the group’s motion as a whole.
Capped by a user-input maximum awareness, a random
sampling of flockmates for each gene is often sufficient to
guide groups of flocks into distinct evolutionary classes.
This heuristic can be important toward the end of a simu-
lation, when many of the final flocks have formed. Groups
of thousands of congruent individuals are not uncommon.
By dimming each agent’s effective perception, only a frac-
tion of these congruent individuals requires analysis.

Despite these shortcuts, flocking is a computationally
expensive procedure. Without image/movie creation and
analysis of the progress in cluster formation (k-means or
OPTICS, see below), the flocking procedure alone re-
quires, on average, 30 CPU seconds for a dataset con-
taining 100 loci of 100 residues each across 10 taxa.
Because we encourage 100 or more replicates, the total
required CPU time per experiment for this hypothetical
dataset would be just short of one CPU hour. By con-
trast, a single run of other clustering procedures, such as
MDS, hierarchical clustering, and PAM, requires less
than a CPU second to analyze this type of data. For
Clusterflock, what is lost in terms of speed is gained in
performance, as we show in the next section.

In test: simulations and comparisons with prevalent
clustering techniques

We simulated 100 locus datasets containing 100 residues
per locus across 10 taxa in Seq-Gen [30] using JTT.
Underlying these simulated proteins were anywhere
from one to 25 generated topologies: in the case of one
underlying topology, all 100 loci were modeled as con-
gruent; in the case of 25 topologies, loci were randomly
assigned to each tree without requiring that each tree be
equally represented. Because missing data is a common
problem in phylogenomics, we chose to model the effect
of data sparsity on clustering performance. Taxa were
randomly assigned as missing on a per locus basis at
rates varying from O to 50 % in 10 % increments. Be-
cause rate heterogeneity is also a common problem, in a
separate set of experiments with no missing data, we
randomly assigned approximately half the proteins in
each matrix to be 3X (1.5/0.5), 7X (1.75/0.25), or 19X
(1.9/0.1) faster than their counterparts in terms of rela-
tive evolutionary rates [30]. For statistical power, we
repeated dataset creation 10 times per topological condi-
tion across our missing data thresholds and rate hetero-
geneity multipliers, for a grand total of 2500 matrices.

Narechania et al. GigaScience (2016) 5:44

In addition to using Clusterflock (100 replicates of 500
frames each), we analyzed the 100 proteins in each
matrix using multidimensional scaling (MDS), hierarch-
ical clustering, and PAM, by using the R packages [31]
cmdscale, hclust, and pam, respectively. In the case of
PAM, a k-medoids operation, and hierarchical clustering,
users needed to provide an estimate of the expected
number of clusters at the outset. In practice, providing
this number is often difficult given the increasing com-
plexity of modern phylogenomic datasets. By contrast,
Clusterflock and MDS techniques spatially encode dis-
tance information between loci in order to allow for the
emergence of distinct data categories.

Figure 3 summarizes the results of these simula-
tions. It shows the average Jaccard Index of all repli-
cates against the number of simulated topologies
across all data sparsity thresholds. Because we knew
both the tree associated with each gene and the num-
ber of topologies in each simulation, we could use
the Jaccard Index to measure the spatial groupings
produced by Clusterflock and MDS clusters either by
k-means clustering, which seeded its operation with
our known number of clusters, or OPTICS [32], a
method designed to identify unseeded clusters in
spatial data regardless of their density. The Jaccard is
defined as follows:

o | e
A B
Clusterflock
2 - 3 -
© | ©
o o
< | < |
o o
o o
o o
x
]
©
C T T T T T T T T T T
— 5 10 15 20 25 5 10 15 20 25
©
et
8 o _| o
- N——N— -
O
o C D
—_
«© _| @
o o
© | © |
o o
Hierarchical Clustering PAM
<] <+
o o
' o
o S
o
o T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25
Topologies
Fig. 3 Simulating topological complexity and missing data. Four plots measuring the Jaccard Index (see In test) against increasing topological
complexity and across increasing levels of missing data percentage (colored as indicated in the insert) are shown. Each curve in each plot,
therefore, corresponds to a specific missing data condition. We compared four methods: (a) Clusterflock, (b) multidimensional scaling (MDS), (c)
hierarchical clustering, and (d) partitioning around medoids (PAM). To compare the four techniques using similar methods, because the number
of underlying topologies in each simulation was known, for Clusterflock and MDS, we used k-means to cluster the final spatial arrangement of loci
and assign OGFs to topological groups

Narechania et al. GigaScience (2016) 5:44

TP
TP+ FP+FN

where TP is the true positive, FP the false positive, and
EN is the false negative, as judged by correct assignment
of genes to a congruent tree topology group.

As expected, the performance of all four methods de-
graded with increasing topological complexity and data
sparsity. No method performed well when 50 % of the
data was missing, a condition that reduced the reso-
lution of the LD metric such that the performance was
only marginally better than random. Increasing the topo-
logical heterogeneity makes it difficult for any method to
distinguish groups. However, Clusterflock was more ro-
bust against the effects of missing data than the other
methods tested here. It also mirrored the performance
of MDS as the evolution of the underlying genes became
more complicated.

With the advantage of seeding, hierarchical clustering
and PAM were superior in the special case where the
number of topologies was known and used to guide clus-
ter formation. As long as there was little missing data,
these two methods were clearly superior of the techniques
compared here. Surprisingly, hierarchical clustering and
PAM performed poorly as data was removed.

We also tested CONCATERPILLAR, a technique that
uses an agglomerative, hierarchical clustering technique
that does not specify the numbers of seeds/groups, but
requires a priori definition of a threshold for inclusion in
a group. We tested CONCATERPILLAR for 2, 5, 10, 15,
20, and 25 underlying topologies at 0 % 10 %, 20, and
30 % missing data, and replicated each condition ten
times. Given that CONCATERPILLAR is a hierarchical
technique, we expected that it would perform similarly
to the standard hclust function. In fact, CONCATER-
PILLAR was at least as good as hclust, and was more re-
silient against missing data up to a point (Table 1).
Because its phylogenetic comparisons require the repre-
sentation of all taxa, CONCATERPILLAR ceased to be
useful at 40 % and 50 % missing data.

Because CONCATERPILLAR and Clusterflock may be
used to address the same biological question, we have
provided a head-to-head comparison of the two tech-
niques (Table 1). In most situations with less than 20 %
missing data, CONCATERPILLAR was superior. How-
ever, the two techniques are not strictly comparable, be-
cause CONCATERPILLAR requires setting an inclusion
threshold whereas Clusterflock does not. Moreover,
CONCATERPILLAR may not be computationally tract-
able in large genomic datasets. Although this is beyond
the scope of this publication, it is possible that further
implementations of Clusterflock that use strictly speci-
fied inclusion thresholds or other measures of phylogen-
etic incongruence might be more successful.

Table 1 Relative performance of CONCATERPILLAR and
Clusterflock

0 % 10 % 20 % 30 %
2 0.91/0.84 0.99/0.87 0.94/0.90 0.90/0.94
5 1.00/0.65 1.00/0.67 0.93/0.68 0.75/0.66
10 1.00/0.54 1.00/0.56 0.89/0.56 047/044
15 1.00/0.43 1.00/0.46 0.83/0.47 0.38/0.25
20 1.00/0.37 0.99/0.41 0.72/0.37 0.22/0.19
25 1.00/0.29 0.99/0.35 0.69/0.34 0.24/0.16

We tabulated Jaccard Indices of CONCATERPILLAR runs on the simulated
datasets described at 0, 10, 20, and 30 % missing data (columns) across 2, 5,
10, 15, 20, and 25 simulated topologies (rows). For comparison, the average
CONCATERPILLAR JI is shown alongside the average Clusterflock JI in each cell
(CONCATERPILLAR|clusterflock). At 40 and 50 % missing data,
CONCATERPILLAR failed to run (denoted by “NA”")

A more apt comparison for Clusterflock is MDS,
which spares the user an initial estimation of the num-
ber of clusters and inclusion thresholds. Comparisons
showed that increasing topological complexity lowered
the Jaccard Index at approximately the same rate, as
long as there was no missing data (Fig. 3 and b). The ad-
vantage of Clusterflock over MDS materialized once the
data thinned. Still, when the underlying complexity was
extreme, both these methods assigned loci correctly less
than half the time, a result that highlights the difficulty
in simultaneously solving both the number of clusters
and their memberships.

Figure 4 shows the effect of rate heterogeneity.
MDS degraded rapidly with increasing rates of
relative heterogeneity, whereas the strong perform-
ance of Clusterflock persisted across evolutionary
rates. Therefore, up to a point, Clusterflock is resili-
ent against both missing data and differing evolution-
ary rates. It performed equally well with 0, 10, and
20 % missing data, whereas MDS showed a quick col-
lapse as information was removed. Further, diverging
evolutionary rates among genes did not seem to affect
the ability of Clusterflock to sort them into their re-
spective topological groups.

Although we favor the Jaccard Index as a more de-
scriptive metric of clustering success, the absolute
number of clusters returned relative to the number of
topologies simulated was also revealing. For spatial
arrangement by either Clusterflock or MDS, we used
k-means to discover clusters for the number of top-
ologies simulated. However, if the spread was insuffi-
cient, a few clusters went unpopulated. Figure 5a
shows that in a k-means context, both Clusterflock
and MDS found fewer congruent clusters than ex-
pected; however, it also shows that MDS suffered
from a larger detection gap. Clusterflock thus seems
to yield better separation between topologically dis-
tinct genes when heterogeneity is high.

Narechania et al. GigaScience (2016) 5:44

1.0

Clusterflock

0.6 0.8
I I

0.4

Jaccard Index

T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25

Topologies

Fig. 4 Simulating topological complexity and evolutionary rate heterogeneity. Here, we show two plots measuring the Jaccard Index against
topological complexity and across four levels of the relative evolutionary rate: 1X (1/1), 3X (1.5/0.5), 7X (1.75/0.25), and 19X (1.9/0.1) (colored as
indicated in the insert). Each curve in each plot therefore corresponds to a specific evolutionary rate condition. We compared two methods here:

(a) Clusterflock and (b) multidimensional scaling

Figure 5b shows the same data for OPTICS-based clus-
tering. Clearly, the ultimate limitation to our chosen
unsupervised clustering techniques is automated density-
based detection of the final arrangement of points. More
sophisticated k-means techniques, like elbow or silhouette
[33], might be useful in this final step. However, for the
most heterogeneous cases, visual inspection is probably
the most reliable solution.

Real-world datasets are likely to be plagued by both
missing data and unknown-but-complex topological di-
versity. Inspecting the spatial arrangement of a few diag-
nostic Clusterflock runs might yield some insight into
the number of dominant clusters to expect, which would
then inform algorithms that require estimates.

In action: a recombination event in Staphylococcus
aureus

In order to test our ability to detect and separate distinct
populations of incongruent OGFs in biological systems,

we used a well-known example of large-scale genomic
recombination between two S. aureus clonal complexes
(CC) [22]. The genomes of ST239 S. aureus appeared to
have formed from a recombination event in which 20 %
of a CC8 genome was replaced with the homologous
portion of the genome from a CC30 strain. We chose
11 S. aureus strains (GCA_000146385.1, GCA_00001204
5.1, GCA_000011505.1, GCA_000011265.1, GCA_00001
3425.1, GCA_000204665.1, GCA_000159535.2, GCA_00
0027045.1, GCA_000017085.1, GCA_000236925.1, and
SA21300), including examples from CC30, CC8 and
ST239, and generated groups of orthologous genes
across all their proteomes using orthologID [34]. The
resulting sequence data matrix contained 2550 OGFs to-
taling 758,270 amino acid characters. Missing data was
tolerated, but representation from at least four taxa for
each gene was required.

Figure 2 shows three frames from the beginning of a
1000-frame simulation and three snapshots from even

& 4 — clusterflock
A — MDS

CLUSTERS

TOPOLOGIES

Fig. 5 Clusters captured from simulated topologies. We plotted the number of topologies simulated against the number of clusters captured
using either k-means (a) or OPTICS-based (b) density clustering of spatial coordinates from either Clusterflock or MDS

& = clusterflock
B — MDS

CLUSTERS

TOPOLOGIES

Narechania et al. GigaScience (2016) 5:44

intervals thereafter. We have color-coded OGFs here for
clarity: green maps to the hybridized portion of the gen-
ome, and red maps to the remainder. A complete video
of this simulation can be found at https://youtu.be/
v_4bDprmkpU.

The sorting of OGFs by phylogeny was evident as early
as the 10™ frame, and proceeded further as these initial
seeds encountered one another in the virtual space. But
hundreds to thousands of frames were required to amass
flocks containing all congruent OGFs. The number of
frames required was dependent on the general phylogen-
etic cohesion of the OGFs as well as their random start-
ing positions and velocities in the virtual space. By the
end of the simulation, the OGFs had self-organized in
the leaderless manner characteristic of swarm behavior.
Without having to estimate the number of expected evo-
lutionary trajectories, we found that there were two
dominant flocks: one corresponding to the recombined
region, and the other to the rest of the genome. We ob-
served two unexpected, smaller flocks (Fig. 6), the

provenance of which did not trace to any known evolu-
tionary event or functional class.

Because of the stochasticity inherent in this type of be-
havioral method, there was no guarantee that flocks of the
recombined region or the rest of the genome would be
complete: either or both might have entered the final
frame in pieces. In other words, we need more statistical
heft than one simulation can provide. To test the reprodu-
cibility of the flocks and identify robust flock membership,
we repeated the simulation in parallel, randomly varying
the initial position and velocity of each OGF. For the pur-
poses of this example, we deployed 100 replicates.

Visual inspection of 100 final frames, or the thousands
that may be desirable for other clustering problems, is
prohibitive. We automated the analysis of each final
frame using the ELKI [35] implementation of the OP-
TICS algorithm. Note that in contrast to our simula-
tions, where we knew the number of clusters and could
therefore leverage k-means clustering, we assume here
that this number is unknown and, in the case of very

SaCoOL

Hybrid Region

SaUSA300TCH1516

SaMSHR1132

Unknown 1

ST8

ST239

ST30

SaATCCBAA39
(—ESaTOISI
SaTW20
68.8305
SaUSA300TCH1516

;SaNCTCBZS

#

SaUSA300TCH1516

Unknown 2

SaMSHR1132

SaMSHR1132 SacoL

SaNCTC8325

Fig. 6 The final frame. Four parsimony trees corresponding to the four dominant flocks are shown superimposed on the final frame of the
example simulation. Taxa are colored according to their phylogenetic group (MLST classification). The unknown phylogenies highlight genes that
are members of two novel evolutionary histories

https://youtu.be/v_4bDprmkpU
https://youtu.be/v_4bDprmkpU

Narechania et al. GigaScience (2016) 5:44

complex datasets, unknowable. Figure 7 shows the aver-
age number of auto-detected flocks across all 100 simu-
lations as a function of their frames. After an initial
spike, or seeding stage, micro-clusters combined with
neighboring micro-clusters that shared a congruent
phylogenetic history. A near-exponential decay in the
number of auto-detected flocks was followed by a steady
state. In the case of S. aureus, by the 200" frame, Clus-
terflock had isolated most of the evolutionary paths.

We systematized flocking information by assigning a
flock label to each OGF for each replicate. For example,
replicate 1 might have resulted in five flocks; each of its
2550 gene families was therefore assigned to A, B, C, D,
or E. Similar assignments were made across all repli-
cates, and the labels were treated as character informa-
tion in a matrix. The Flock Matrix therefore had as
many rows as there were OGFs and as many columns as
there were replicates. Organized in this way, we were
able to derive our final sets of congruent OGFs using
tree reconstruction, as shown in Fig. 8a. This topology
highlighted groups of OGFs that regularly flocked to-
gether across all replicates. We used neighbor joining
and assessed node robustness by bootstrapping 100
times. Because we had no external truth against which
to measure success, we propose that the application of
non-parametric bootstrapping to the Flock Matrix can
serve as the basis for assessing validity [36-39]. We

observed high levels of support for the flock composed
of recombined genes and flocks that represented the two
novel phylogenetic histories highlighted in Fig. 6.

The main premise of this study was that we can use
Clusterflock to detect the genes involved in the ST239
recombination event a priori by merely using pairwise
interactions guided by incongruence metrics as OGFs
encounter one another in a virtual space. There was no
expectation that we would find only two unique flocks,
an assumption required by other clustering methods
keyed on partitional seeds. Indeed, two additional flocks
emerged, with OGFs that tightly shared a unique histor-
ical signal distinct from our two main evolutionary clas-
ses. When we clustered these data with MDS (Fig. 9)
there was no discernable pattern, a predicament most
likely due to some combination of missing data and rate
heterogeneity.

If, as we suspect, the conflicting histories of our two
main flocks originated from the recombination event,
we should observe the gene families’ sort based on the
known boundaries of the structural change. By creating
profile HMMs [40, 41] of each of our 2550 OGFs and
mapping them to the S. aureus USA300/TCH1516 gen-
ome using hmmsearch in the HMMER package, we
showed that the flock of OGFs corresponding to the
recombined region (Fig. 6b), mapped there almost exclu-
sively. The flock corresponding to the rest of the genome

aq
o
o
=
(2]
4
8
T ®
L
o
°
[9]
Qo
£
=]
z ©
[0}
(o]
[}
@
g
<C
<
N_J

the simulation

0 200 400

Fig. 7 Auto-detected flocks per frame. Here, we show the average number of flocks detected at any given point along a 1000-frame simulation
for the S. aureus simulation. The OPTICS spatial clustering algorithm was used to auto-detect flocks in the 100 replicate frames at each point along

600 800 1000

Frame

Narechania et al.

GigaScience (2016) 5:44

" W,
L7
O,/

Fig. 8 Consensus tree of Staphylococcus aureus flocks mapped to the USA300TCH1516 genome. a The neighbor joining the bootstrap consensus
tree for 100 simulations is shown. The majority of the genome occupies the largest branch consisting of a virtual polytomy (red). Four other
branches of note are highlighted, the largest of which describes the flock consisting of genes from the recombined region (green). b We
constructed HMMs from the orthologous groups (genes) in each of the four dominant flocks and queried them against a USA300TCH1516
reference. Their genomic locations are shown in the four tracks displayed here. The outermost track is composed of genes from the largest flock.
The second track localizes genes from the second largest flock to the known recombined region

o
o
g
o o [e)e]
° o

o o

S 7] o o
&
5
o
Q.
g =
g 97

o
o

[V o

S 4

1

T T T T T T T
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

mdsprod[,1]

Fig. 9 Multidimensional scaling of the Staphylococcus aureus dataset. We show a failed attempt to cluster the Staphylococcus aureus dataset with
MDS. Most loci gathered in a single area, and we can see no separation between the recombined region and the rest of the genome

Narechania et al. GigaScience (2016) 5:44

was enriched in genes outside the recombined region, but
this enrichment was imperfect. Many genes from within
the recombined region contaminated the flock represent-
ing the rest of the genome. The difference in length be-
tween these genes with respect to genes in the largest
flock was zero, indicating that they were 100 % congruent
with the non-recombined phylogeny. These select regions
of the recombination event could have reverted through a
series of subsequent recombination events, or may reflect
the fact that the original recombination event did not re-
place one continuous section of the chromosome. A dis-
continuous pattern of recombination is known to occur in
other bacteria [42, 43]. Other possibilities include conver-
gent changes or high levels of conservation prior to the re-
combination event.

Conclusions

Clusterflock is an enhanced version of Reynolds’ original
flocking algorithm customized to function as a clustering
technology. We have shown here that it is well-suited to
isolating congruent gene families into discrete flocks,
even if they have significant levels of missing data or rate
heterogeneity. It can be used to identify a phylogenetic
core of genes that share a vertical evolutionary signal
while highlighting those that conflict in subtle ways.
However the technique is general, and not restricted to
evolutionary analysis [25]. Any distance metric scaled
between 0 and 1 can be used to cluster any set of en-
tities. In an era when supervised machine learning often
captures the headlines in news on bioinformatics, Clus-
terflock is in the tradition of data mining: a bio-inspired
clustering algorithm used to discover categories of en-
tities without any training, any sense of the number of
categories to expect, and any bias in how distant two en-
tities must be to be considered distinct.

Availability and requirements

* Project Name: Clusterflock

* Project Page: https://github.com/narechan/clusterflock

* Docker Hub: https://hub.docker.com/r/narechan/clus-
terflock-0.1/

* Operating System: Linux

* Programming Language: PERL

* Other Requirements: See manual in the distribution

* License: GPLv3

Availability of data and materials
The datasets and snapshots of the code supporting the results of this article
are available in the GigaScience repository, GigaDB [44].

Authors’ contributions

AN and PJP conceived and designed the study. AN wrote the software. RB,
RD, BM, SOS, and BK participated in discussions to refine the core algorithm
and design an appropriate real world test. AN and PJP wrote the manuscript.
All' authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details

'Sackler Institute for Comparative Genomics, American Museum of Natural
History, New York, NY 10024, USA. 2Public Health Research Institute Center,
New Jersey Medical School, Rutgers Newark, NJ 07103, USA. *Department of
Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of
Philadelphia & University of Pennsylvania, Philadelphia, PA 19104, USA.
“Department of Biological Sciences, Fordham University, Bronx, NY 10458,
USA. *Department of Epidemiology, Mailman School of Public Health,
Columbia University, New York, NY 10032, USA.

Received: 17 July 2015 Accepted: 12 October 2016
Published online: 24 October 2016

References
1. Krause J, Ruxton GD. Living in groups. Oxford/New York: Oxford University
Press; 2002.

2. Heppner FH. Three-dimensional structure and dynamics of birds flocks. In:
Parrish JK, Hamner WM, editors. Animal groups in three dimensions.
Cambridge: Cambridge University Press; 1997.

3. Pitcher TJ, Parrish JK. The functions of shoaling behavior. In: Pitcher TJ,
editor. The Behavior of Teleost Fishes. London: Chapman & Hall; 1993. p.
363-439.

4. Partridge BL, Pitcher TJ. The sensory basis of fish schools: relative role of
lateral line and vision. J Comp Physiol. 1980;135:315-25.

5. Couzin ID. Collective cognition in animal groups. Trends Cogn Sci. 2009;
13(1):36-43.

6. Okubo A. Dynamical aspects of animal grouping: swarms, schools, flocks,
and herds. Adv Biophys. 1986,22:1-94.

7. Huth A, Wissel C. The simulation of the movement of fish schools. J Theor
Biol. 1992,156:365-85.

8. Czrok A, Vicsec M, Vicsec T. Collective motion of organisms in three
dimensions. Physica A. 1999,264:299-304.

9. Czrok A, Stanley HE, Vicsec T. Spontaneously ordered motion of self-
propelled particles. J Physics A. 1997;30:1375-85.

10. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and
spatial sorting in animal groups. J Theor Biol. 2002,218(1):1-11.

11. Reynolds C. Flocks, herds, and schools: a distributed behavioral model.
Comput Graph. 1987;21(4):25-34.

12. Planet PJ. Tree disagreement: measuring and testing incongruence in
phylogenies. J Biomed Inform. 2006;39(1):86-102.

13. Boto L. Horizontal gene transfer in the acquisition of novel traits by
metazoans. Proc Biol Sci. 2014;281(1777):20132450.

14. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat
Rev Genet. 2008,9(8):605-18.

15. Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of
bacterial and archaeal population structure. Trends Genet. 2013;29(3):170-5.

16. Syvanen M. Evolutionary implications of horizontal gene transfer. Annu Rev
Genet. 2012;46:341-58.

17. Planet PJ. Reexamining microbial evolution through the lens of horizontal
transfer. EXS. 2002,92:247-303.

18. Leigh JW, Schliep K, Lopez P, Bapteste E. Let them fall where they may:
congruence analysis in massive phylogenetically messy data sets. Mol Biol
Evol. 2011,28(10):2773-85.

19. Planet PJ, Sarkar IN. mILD: a tool for constructing and analyzing matrices of
pairwise phylogenetic character incongruence tests. Bioinformatics. 2005;
21(24):4423-4.

20. Andam CP, Gogarten JP. Biased gene transfer in microbial evolution. Nat
Rev Microbiol. 2011;9(7):543-55.

21, Leigh JW, Susko E, Baumgartner M, Roger AJ. Testing congruence in
phylogenomic analysis. Syst Biol. 2008,57(1):104-15.

22. Robinson DA, Enright MC. Evolution of Staphylococcus aureus by large
chromosomal replacements. J Bacteriol. 2004;186(4):1060-4.

23. Farris JS, Kallersjo M, Kluge AG, Bult C. Constructing a significance test for
incongruence. Syst Biol. 1995;44:570-2.

24. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). 4th ed. Sunderland: Sinauer Associates; 2003.

25. Cui X, Gao J, Potok TE. A flocking based algorithm for document clustering

analysis. J Syst Arch. 2006;52(8-9):505-15.

https://github.com/narechan/clusterflock
https://hub.docker.com/r/narechan/clusterflock-0.1/
https://hub.docker.com/r/narechan/clusterflock-0.1/

Narechania et al. GigaScience (2016) 5:44

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Bellaachia A, Bari A. A flocking based data mining algorithm for detecting outliers
in cancer gene expression microarray data. In: IEEE International Conference on
Information Retrieval and Knowledge Management, Malaysia. 2012.

Gross M, Heidelberger B, Muller M, Pomernats D, Teschner M. Optimized
spatial hashing for collision detection of deformable models. vision, modeling,
and visualization. Proc. Vision, Modeling, Visualization VMV; 2003, 47-54.
Hastings EJ, Mesit J, Guha RK. Optimization of large-scale, real-time
simulations by spatial hashing. In: Proc 2005 Summer Computer Simulation
Conference. 2005. p. 9-17.

Gueron S, Levin SA, Rubenstein DI. The dynamics of herds: from individuals
to aggregations. J Theor Biol. 1996;182(1):85-98.

Rambaut A, Grassly NC. Seg-Gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Comput
Appl Biosci. 1997;13(3):235-8.

Team RC. R: A language and environment for statistical computing. In: R
Foundation for Statistical Computing. 2015.

Ankerst M, Breunig MM, Kriegel H, Sander J. OPTICS: ordering points to
identify the clustering structure. In: ACM SIGMOD International Conference
on Management of Data 1999. New York: ACM Press; 1999. p. 49-60.
Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster
analysis. New York: Wiley; 1990.

Chiu JC, Lee EK, Egan MG, Sarkar IN, Coruzzi GM, DeSalle R. OrthologID:
automation of genome-scale ortholog identification within a parsimony
framework. Bioinformatics. 2006:22(6):699-707.

Achtert E, Kriegel H, Zimek A. ELKI. A software system for evaluation of
subspace clustering algorithms. In: 20th International Conference on
Scientific and Statistical Database Management, Hong Kong, China. 2008.
Ben-Hur A, Elisseeff A, Guyon I. A stability based method for discovering
structure in clustered data. Pac Symp Biocomput. 2002;7:6-17.

Levine E, Domany E. Resampling method for unsupervised estimation of
cluster validity. Neural Comput. 2001;13(11):2573-93.

LiuY, Li Z Xiong H, Gao X, Wu J, Wu S. Understanding and enhancement of
internal clustering validation measures. IEEE Trans Cybern. 2013;43(3):.982-94.
Volkovich Z, Toledano-Kitai D, Weber G-W. Self-learning K -means clustering:
a global optimization approach. J Glob Optimization. 2013;56(52):219-32.
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):755-63.
Krogh A, Brown M, Mian IS, Sjolander K, Haussler D. Hidden Markov models
in computational biology. Applications to protein modeling. J Mol Biol.
1994;235(5):1501-31.

Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ. Natural transformation
of helicobacter pylori involves the integration of short DNA fragments
interrupted by gaps of variable size. PLoS Pathog. 2009;5(3):¢1000337.

Mell JC, Shumilina S, Hall IM, Redfield RJ. Transformation of natural genetic
variation into Haemophilus influenzae genomes. PLoS Pathog. 2011,7(7):
€1002151.

Narechania, A; Baker, R; DeSalle, R; Mathema, B; Kolokotronis, S; Kreiswirth, B;
Planet, P, J. Supporting data for"Clusterflock: A Flocking Algorithm for
Isolating Congruent Phylogenomic Datasets". 2016. GigaScience Database.
http://dx.doi.org/10.5524/100247.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolMed Central

http://dx.doi.org/10.5524/100247

	Abstract
	Background
	Findings
	Conclusions

	Background
	Implementation
	In test: simulations and comparisons with prevalent clustering techniques
	In action: a recombination event in Staphylococcus aureus

	Conclusions
	Availability and requirements

	Availability of data and materials
	Authors’ contributions
	Competing interests
	Author details
	References

