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Abstract

Background: Formalin fixed paraffin embedded (FFPE) samples are a valuable resource in cancer research and have
the potential to be extensively used. However, they are often underused because of degradation and chemical
modifications occurring in the RNA that can present obstacles in downstream analysis. In routine medical care, FFPE
material is examined and archived, therefore clinical collections of many types of cancers exist. It is beneficial to assess
and record the quality of data that can be obtained from this type of material. The current study investigated three
independent platforms and their ability to profile microRNAs (miRNAs) within FFPE samples from hepatoblastoma (HB)
patients.

Findings: Here we present three types of datasets consisting of miRNA profiles for 13 HB patients with different
tumour types and molecular variations. The three platforms that were used to generate these data are: next-generation
sequencing (Illumina MiSeq), microarray (Affymetrix® GeneChip® miRNA 3.0 array) and NanoString (nCounter, Human v2
miRNA Assay). The mature miRNAs identified are based on miRBase version 17 and 18.

Conclusions: These datasets provide a global landscape of miRNA expression for a rare childhood cancer that has not
previously been well characterised. These data could serve as a resource for future studies aiming to make comparisons
of HB miRNA profiles and to document aberrant miRNA expression in this type of cancer.

Keywords: miRNA, FFPE, RNA expression, Microarray, Next-generation sequencing, NanoString, Hepatoblastoma,
Epigenetics

Background
MicroRNAs (miRNAs) are a large group of small non-
protein coding RNAs, which are important epigenetic
regulators of gene expression [1, 2] and have a role in
transcriptional control in a variety of cancers including
hepatoblastoma (HB) [3, 4]. miRNA profiling research
has identified unique signatures that can be used to
classify cancers by determining specific miRNA markers
predicting favourable or unfavourable prognoses. Cata-
loguing the miRNA expression profiles for a large number
of different tumour classes may aid in both diagnosis and
treatment of cancer [5, 6].

Formalin fixed paraffin embedded (FFPE) samples are
a major source of material for HB research. Because of
the rare nature of this disease and the limited availability
of fresh-frozen tumour samples, it is essential to suc-
cessfully utilise FFPE samples to obtain high-quality data
from these tumours. However, analysis of FFPE material
presents obstacles because the process of fixation and
embedding, as well as storage time, can negatively im-
pact the quality of RNA isolated from these samples. At
a molecular level, modifications occurring from chemical
reactions between the fixative and nucleic acids may
cause nucleic acid fragmentation and degradation of the
RNA [7]. Previous studies have carried out comparative
analyses of multiple platforms using non-FFPE material
[8, 9]. Other studies have compared platforms for their
compatibility with FFPE material but have utilised only
one or two platforms, such as microarray with validation
using RT-qPCR. Another study used both fresh frozen
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and FFPE tissue on multiple platforms, however, the
sample numbers were very small [10–15]. Studies that
have examined HB and miRNAs often used a more tar-
geted approach to investigate candidate miRNAs, rather
than performing global profiling of tumour samples [16].
Therefore, the miRNA profile of HB tumours has not
been extensively investigated, and a global assessment of
the miRNA landscape in HB is lacking.
Here we describe miRNA profiles for 13 HB tumour

samples, which we achieved by using a combination of
three platforms for miRNA detection. Three of the 13
samples were run using next-generation sequencing
(NGS) and a microarray (MA), and a total of 12 of the
13 samples were assessed using NanoString (NS). A
comprehensive analysis of the shared miRNA detection
across platforms and a comparison of the most highly
abundant miRNAs is described.
FFPE material poses challenges to analysis; the most

notable being degradation of the sample material. This is
an important consideration for generating data and plat-
form selection. Varying amounts of starting material are
required for different technologies; for instance, the
NGS platform used for analysis required 1 μg of RNA,
while the MA required 400 ng, and the NanoString only
required 100 ng. These starting amounts can either
greatly hinder or enhance the data that can be generated,
based on the limited amount of sample available to a
researcher. When assessing miRNAs, RNA quality (as
determined by the RNA integrity number or RIN, which
gives an indication of how intact the total RNA is), may
not play as important a role when considering which
platform to choose. Our study indicates sample RIN
numbers as low as 1.7 produce good quality miRNA
data on all the platforms assessed in this study.

Original purpose
We generated these datasets to describe the miRNA
landscape in hepatoblastoma using FFPE samples [17].
In addition, we aimed to describe the strengths and
weaknesses of the different platforms: NGS, MA, and
NS, for the detection of miRNAs. The level and tech-
nical reproducibility for detecting miRNAs in each plat-
form for each sample was investigated and compared
between platforms. Further, results were collated to de-
termine the level of shared detection and abundance of
specific miRNAs between these three platforms. Hier-
archical clustering was performed on the NanoString
dataset, which revealed similarities in miRNA profiles
in a number of samples, and a unique profiling pattern
present in an aggressive HB phenotype [17].

Sample description
A total of 13 HB tumour samples were evaluated in this
study. Three samples (S4, S5 and S6) were analysed with

technical replicates on the NGS and MA platforms. S5
and S6 were also analysed with the NS platform (S4 was
excluded due to limited sample availability). Further, an
additional 10 samples (S7–S16), making a total of 12 HB
tumours, were investigated on the NS platform. The age
of the patients ranged from 5 months to 10 years
6 months. The samples were a mix of tumour types; the
most common being epithelial and fetal, followed by
epithelial and mixed fetal embryonal, mixed epithelial
mesenchymal and fetal, and finally mixed epithelial mes-
enchymal and mixed fetal embryonal. One sample (S5)
was described histologically as cholangioblastic. Four of
the samples contained a mutation in the CTNNB1 gene
(beta-catenin) [18] (Table 1).

Platforms used for miRNA quantification
Three platforms were used for miRNA quantification in
this study. For the next generation sequencing, 1 μg in-
put RNA was required to construct the small RNA li-
braries with the TruSeq® Small RNA sample preparation
kit (Illumina, San Diego, CA) according to the manufac-
turers instructions. The Illumina MiSeq platform was
used to produce single ended, 50 bp sequenced reads
(in FASTQ format). For the microarray platform,
400 ng of input RNA was required. The samples were
labelled without amplification with the Affymetrix
FlashTag™ Biotin HSR RNA Labeling Kit; the labelled
samples were hybridised on an Affymetrix® GeneChip®

miRNA 3.0 array according to manufacturers guide-
lines. This chip is able to detect 1733 mature miRNAs
based on miRBase version 17. The NanoString platform
utilises colour-coded molecular barcodes (probes) to
directly hybridise to targets of interest. Single molecule
imaging is used to collect highly accurate digital counts
of different nucleic acids corresponding to each bar-
code. We have used Human v2 miRNA Assay Kit for
the NanoString platform, which requires 100 ng input
RNA and is capable of detecting 800 mature miRNAs
based on miRBase version 18. Samples were prepared
and analysed according to standard NanoString guide-
lines for miRNA analysis.

Data analysis
Quality assessment of miRNA detection platforms data
and post processing
We briefly describe the processing steps to generate
these datasets (Fig. 1). A detailed description of the ex-
perimental and analysis steps can be found here [17].
Additionally, to ensure consistent data were achieved
using both miRBase versions 17 and 18, the miRNAs
were manually checked for inconsistencies, and nomen-
clature was matched to miRBase version 17. This per-
mitted appropriate comparison of the panel of 800
miRNAs with the microarray and NGS data for further
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Table 1 Details of the FFPE hepatoblastoma datasets described in this Data Note

Sample Patient age Tumour type + subtype (comments) Relapse free
survival

Overall survivala Pretext
at
diagnosis

Presence/
location of
phosphory-lated
-catenin

β-
catenin
mutation

Platform
analysis

Number of miRNAs detectedb and GSE
accession number

NGS MA NS NGSGSE62010 MAGSE62011 NSGSE62017

S4 2 years Epithelial/mes-enchymal + fetal 3 years
10 months

3 years
10 months (A)

3 cytoplasmic absent ✓ ✓ - 244 83 -

S5 5 months Epithelial + fetal (cholangioblas-tic) 2 months 7 years (A) 3 cytoplasmic absent ✓ ✓ ✓ 309 118 299

S6 8 months Epithelial + fetal (cell clusters, aberrant
differentiation)

8 years
11 months

8 years
11 months (A)

3 cytoplasmic present ✓ ✓ ✓ 321 116 372

S7 10 years
6 months

Epithelial + fetal 1 year
3 months

5 years
4 months (A)

2 cytoplasmic present - - ✓ - - 216

S8 1 year
7 months

Epithelial + fetal (fibrosis post chemo) 6 years 6 years (A) 2 cytoplasmic +
nucleus

absent - - ✓ - - 139

S9 2 years
4 months

Epithelial + fetal 8 years
4 months

8 years
4 months (A)

3 cytoplasmic absent - - ✓ - - 323

S10 1 year
6 months

Epithelial + fetal/embryonal 7 years
6 months

7 years
6 months (A)

2 nucleus present - - ✓ - - 316

S11 9 months Epithelial + fetal 4 years
10 months

4 years
10 months (A)

3 - present - - ✓ - - 135

S12 1 year
8 months

Epithelial/mes- enchymal + fetal/
embryonal

9 months 9 months (D) 2 cytoplasmic absent - - ✓ - - 352

S13 2 years
5 months

Epithelial + fetal 6 years
6 months

6 years
6 months (A)

3 cytoplasmic +
nucleus

absent - - ✓ - - 191

S14 7 months Epithelial + fetal/embryonal 5 years
3 months

5 years
3 months (A)

2 cytoplasmic absent - - ✓ - - 411

S15 2 years
2 months

Epithelial + fetal 4 years
6 months

4 years
6 months (A)

2 cytoplasmic absent - - ✓ - - 163

S16 5 months Epithelial + fetal 11 years 11 years (A) 4 cytoplasmic +
nucleus

absent - - ✓ - - 265

aindicates that the overall survival data was last recorded from 2007, (A) and (D) are indicative of status indicator at the time, alive and deceased respectively
bindicates S4, S5, and S6 were run in replicate for the NGS and MA platform, therefore the number of miRNAs detected is an average of the replicates
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analysis (Additional file 1: Table S1). The proportion of
miRNAs mapped for each sample to the total number of
identifiable miRNAs from each platform can be found in
Additional file 1: Tables S2–S4.

Next-generation sequencing data
Assessment of the quality of the sequenced reads, quality
trimming, and removal of adaptors from the 3’ end of
the sequences was performed as previously described
[19–22]. The median Phred score of the sequenced bases
was > 34 through to the fiftieth sequencing cycle for all
the analysed samples. The GC percentage of the samples
ranged between 51 and 61. Adapter sequences were re-
moved using Cutadapt [23]. Processed reads were
mapped to known miRNAs from the miRBase 17 data-
base using Bowtie1 and miRDeep2 [24, 25]. The number
of reads that mapped to an individual miRNA was used
to represent its level of expression.

Microarray data
Raw data in CEL files were normalised using a robust
multi-array average (RMA) approach. Median values of
each of the probe sets were used to summarise expres-
sion values for each microarray chip. Confidently identi-
fied miRNAs were determined using a threshold
determined by a spike-in control included on the chip
(Biob_3). This spike-in has the lowest concentration and
represents the limit of detection of the microarray.
Probe intensity values below the limit are considered to
be background noise and are removed from further

analysis. Data quality control was assessed using the
miRNAv3 Array QC report. All parameters assessed in-
dicated that high quality data were obtained (Fig. 1).

NanoString data
Raw data in RCC (reporter code count) files were loaded
into nSolver™ and used to perform quality assessment
and normalisation. A normalisation factor was generated
using the geometric mean of the top 100 miRNAs for
each sample to offset technical noise. Raw counts were
multiplied by the normalisation factor to produce a list
of normalised miRNA counts (Fig. 1). Negative controls
were included in the expression assays; the limit of de-
tection was calculated by adding 2 SD to the mean of
the negative controls (threshold =mean + 2SD). NS data
quality was assessed using nSolver® default instructions
(version MAN-C0011-03) (NanoString Technologies
Inc., nCounter Expression Data Analysis Guide). All
samples passed all parameters, with the exception of S6,
S7, S14, S15 and S16, which did not pass the positive
control limit of detection. Degradation of RNA may have
contributed to the low counts of miRNAs being ob-
tained globally in these samples.

Comparison of miRNA detection and abundance with
previous studies
We compared our datasets to several other, relevant
published datasets. The first dataset comprised 33 miR-
NAs identified as differentially expressed between nor-
mal tissue and HB by Magrelli et al. [3]. We found that

Fig. 1 Workflow of the analysis and details of specific strategies for quality assessment of multiple datasets. Check marks corresponding to each
quality standard indicate successfully analysed modules for each platform
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75.8 % of these differentially expressed miRNAs were
also present in our list of 98 miRNAs, (miRNAs detected
by at least one sample on all three platforms; significant
overlap, P = 5.11e-18, hypergeometric test, determined
with the reference set of miRNAs as the panel of 800
assessed by NanoString). Commonly detected miRNAs
between these studies are reported in Additional file 1:
Table S5. When we performed similar analysis with our
dataset of 50 miRNAs (miRNAs detected in all of the
12 samples analysed by the NanoString platform), the
overlap remained significant (30.3 % overlap, P = 1.01e-5,
hypergeometric test, determined with the reference set of
miRNAs as the panel of 800 assessed by NanoString).
Finally, we compared our data with the GSE21085 hepa-

toblastoma dataset, which includes non-coding RNA data
(analysed on the OSU-CCC MicroRNA Microarray Ver-
sion 2.0 [condensed version]). We found an overlap of
79 % between our 50 commonly detected miRNAs and
GSE21085 (Additional file 1: Table S6). However, this
comparison is not completely valid, and should be inter-
preted with caution: the GSE21085 dataset contains only
miRNAs that were known at the time of the particular
array design (2005). Additionally, the probes in this array
used a selection of pre-miRNAs, while our analysis solely
detects the sequences of mature miRNAs.

Validation by qPCR of miRNAs detected by individual
platforms on the remaining material
qPCR is often considered the gold standard method for
quantifying RNA expression. We therefore aimed to
further validate the miRNAs detected by other plat-
forms. We were able to perform qPCR experiments on
only six samples out of the 13 investigated tumours be-
cause of the limited availability of RNA from these
samples. Validation was performed on five miRNAs
(miR-191, miR-95, miR-17, miR-181a, miR-106b), using
housekeeping small RNA (RNU6B) as a control. We
chose these miRNAs because they have previously been
implicated in cancer, and miR-17 and miR-181a are also
in the Magrelli dataset [3, 26–29]. NGS and MA plat-
forms provided limited data for these miRNAs (only
one sample could be assessed), so we were unable to
make a direct comparison of these two platforms with
qPCR. However, we were able to compare qPCR quan-
tification with NS, and we observed that NS was better
at detecting these five investigated miRNAs in our sam-
ples (Additional file 1: Table S7). Our data suggest that
in some cases, such as when analysing limited archival
FFPE samples, NanoString may be more effective than
qPCR for the detection of miRNAs.

Potential use and application of the data
FFPE material is an important resource: if FFPE samples
could be used to their full potential, they will be

beneficial to cancer research. These datasets provide a
resource describing the strengths and limitations of
three platforms used in miRNA detection. These data
can serve as a guideline for future research aimed at
miRNA profiling, particularly of FFPE samples. Further-
more, 13 HB tumours have been characterised for their
miRNA profiles, and since HB is a rare cancer, these
datasets can be used in other HB research as a compari-
son and to supplement further work. Additionally, these
data could be used alongside that from other childhood
cancers to explore potential relationships and identify
related patterns of miRNA expression.
Altered patterns of miRNA expression have previ-

ously been identified in HB and several miRNAs have
been investigated as predictors of prognosis in patients
[3, 30]. miRNA expression levels may help to under-
stand factors contributing to the progression of this
disease. For instance, from the datasets described here
we identified that S5 had a distinctly altered miRNA ex-
pression pattern and clustered differently from the
other HB tumours. This particular sample displayed an
aggressive phenotype, and had the shortest event-free sur-
vival period of the 13 patients. This sort of information
will therefore be valuable to establish a better understand-
ing of the relationship between miRNA expression profiles
and the severity of HB development in different patients.

Availability and requirements
The sequencing, microarray and NanoString data have
been submitted to the NCBI GEO repository under
three different accession numbers (Table 1). All datasets
consist of a metadata spreadsheet that provides a sum-
mary of the project and the associated files. Downstream
analysis using the processed data can be performed with
standard computers (4 Gb RAM and 2–4 CPU cores).
The sequencing dataset contains one processed file

displaying the raw read counts for each miRNA. This file
was used to generate the lists of confidently identified
miRNAs using arbitrary thresholds of both ≥ 5 and ≥ 10
reads [17]. Raw Fastq files (total size: 1.07 GB) were in-
cluded to perform alignment and downstream analysis,
if desired by independent researchers.
The microarray dataset contains two files (processed

data, in .xlxs format): a file containing all miRNAs from
miRBase version 17 and the associated RMA normalised
intensity signal for all samples. The second file contains
the miRNAs confidently identified using the internal
control bioB-3 signal intensity as a threshold for the
limit of detection of the array. Raw CEL files comprising
the raw signal intensity values of the probes (total size:
17.7 MB) are also included to allow independent pro-
cessing if desired.
For NanoString, a matrix table with the commercial

probe names for the 800 miRNAs is provided in the
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metadata spreadsheet; the raw data file contains RCC
files (total size: 76 KB). These files may be used if alter-
native normalisation techniques and different detection
thresholds are required. Further, two processed files are
provided: the first contains the tabulated counts for
each miRNA (from miRBase version 18) normalised to
the top 100 miRNAs in each sample, and the second
file contains only the miRNAs confidently identified
after applying a threshold calculated by adding 2SD to
the mean of the internal negative controls (threshold =
mean + 2SD).

Project name
Multi-platform microRNA profiling of hepatoblastoma
patients using formalin fixed paraffin embedded archival
samples

Operating system(s)
Platform-independent, but UNIX/Linux preferred.

Availability of supporting data
Datasets supporting the results of this article are available
in the NCBI Gene Expression Omnibus archive under
accession number GSE62010 (sequencing), GSE62011
(microarray),and GSE62017 (NanoString). Data further
supporting this paper can be found in the GigaScience
Database [31]
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