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Abstract

at estimating performance and ranking methods.

Background: The recently held Critical Assessment of Function Annotation challenge (CAFA2) required its
participants to submit predictions for a large number of target proteins regardless of whether they have previous
annotations or not. This is in contrast to the original CAFA challenge in which participants were asked to submit
predictions for proteins with no existing annotations. The CAFA2 task is more realistic, in that it more closely mimics
the accumulation of annotations over time. In this study we compare these tasks in terms of their difficulty, and
determine whether cross-validation provides a good estimate of performance.

Results: The CAFA2 taskis a combination of two subtasks: making predictions on annotated proteins and making
predictions on previously unannotated proteins. In this study we analyze the performance of several function
prediction methods in these two scenarios. Our results show that several methods (structured support vector
machine, binary support vector machines and guilt-by-association methods) do not usually achieve the same level of
accuracy on these two tasks as that achieved by cross-validation, and that predicting novel annotations for previously
annotated proteins is a harder problem than predicting annotations for uncharacterized proteins. We also find that
different methods have different performance characteristics in these tasks, and that cross-validation is not adequate

Conclusions: These results have implications for the design of computational experiments in the area of automated
function prediction and can provide useful insight for the understanding and design of future CAFA competitions.

Keywords: Automated function prediction, Gene Ontology, Machine learning, Support vector machines

Background

Proteins are the workhorses of life, and identifying their
functions is an important biological problem. The Gene
Ontology (GO) [1] is a structured vocabulary that cap-
tures protein function in a hierarchical manner. Through
various wet-laboratory experiments over the years, sci-
entists have been able to annotate a large number of
proteins with GO categories that reflect their function-
ality. However, experimentally determining protein func-
tions is a highly resource-consuming task. The reasonable
success in computationally determining the functions of
proteins using a variety of data sources—by homology
from sequence/structure, using various biological net-
work data, and by text mining [2—5]—has led to automated
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function prediction (AFP) being established as an impor-
tant problem in bioinformatics.

As a result of the emergence of a multitude of com-
putational methods for protein function prediction, the
community has realized the need for a systematic and
organized means of comparing the performance of these
methods so as to assess how far the area has progressed.
Taking note from critical assessment efforts such as Crit-
ical Assessment of protein Structure Prediction (CASP)
[6] and Critical Assessment of Prediction of Interactions
(CAPRI) [7], the AFP community decided to hold its own
competition: Critical Assessment of Function Annotation
(CAFA) [5]. The main objective of CAFA is to gather all
AFP researchers in one place to fairly assess and com-
pare the latest computational methods using a centralized
and independent assessment. In the first CAFA (CAFA1)
the participants were provided with a list of protein tar-
gets that did not have any previous annotations and were
asked to submit computational predictions using their
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own AFP methods [5]. Once the predictions were submit-
ted, the organizers collected the experimentally validated
GO annotations acquired for the targets over a period
of 6 months. Finally the computational predictions were
compared against those annotations to compute the accu-
racy of each AFP method.

The recent CAFA2 challenge [8] had exactly the same
setup, except that the list of 100,000 target proteins con-
sisted of both annotated and unannotated proteins. The
added requirement of making predictions on currently
annotated proteins makes CAFA2 a more realistic repre-
sentation of the function prediction problem, as it better
models the accumulation of annotations over time. We
identify the CAFA2 requirements as a combination of two
subtasks: making predictions on annotated proteins and
making predictions on unannotated proteins.

The AFP problem posed in CAFA is more challenging
than the typical machine learning problem, as the usual
assumption in machine learning is that the distribution of
examples in the training set is reflective of that in the test
set. In the CAFA AFP problem this assumption proba-
bly does not hold because the training is performed on an
older set of annotations whereas testing is performed on
newer annotations; and it is known that the distribution
of GO categories changes over time as a result of strong
biases in the annotation process [9]. Furthermore, the
annotations acquired for annotated proteins and for unan-
notated proteins can be expected to differ in frequency
and specificity: an annotated protein can be expected to
acquire more specific GO categories than an unanno-
tated protein, and perhaps more of them, as the biology
community tends to study proteins that are already char-
acterized. The COMBREX project is an effort to address
this bias [10].

In this study we clearly delineate the differences
between these two AFP tasks (i.e. the task of making pre-
dictions for annotated proteins and the task of making
predictions for unannotated proteins) and how different
AFP methods perform in each case. We also compare
the performance of AFP methods on these tasks with
their performance in cross-validation (CV), which is typ-
ically used by many to assess and compare AFP methods.
Finally, we determine whether the performance metric
has an impact on the ranking of different methods. Our
results have ramifications for practitioners in the area
of AFP, which should help them in the design of their
computational experiments.

Data Description

Prediction tasks

We identify two tasks in the area of AFP: prediction
of annotations for proteins without previous annota-
tions (denoted ‘novel proteins’ or NP) and prediction of
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novel annotations for proteins that already have some
annotations associated with them (denoted ‘novel annota-
tions’ or NA). To understand the relative difficulty of these
tasks we compare the performance of several AFP meth-
ods under evaluation protocols that directly capture these
tasks and also compare them to the typically used alter-
native, which is CV. In what follows we describe in detail
the protocols, the data used, and the algorithms that were
compared.

Evaluation protocols

We compare three experimental setups: CV, NA and NP.
CV is the standard CV setup that is typically used for eval-
uating AFP methods; more specifically, we use 5-fold CV
in which each fold corresponds to a randomly chosen set
of proteins.

In the NA protocol, methods are trained using the set
of annotations acquired in or before the year 2009, and
tested on the set of annotations gathered on the same
set of proteins after 2009 (the ‘GO annotations’ section
below fexplains the criteria used for selecting the final set
of annotations). In other words, the same set of proteins
are used for training and testing, but the training labels
are annotations that were available in 2009, whereas test-
ing labels are annotations made available after 2009. An
annotation that was added with a new evidence code but is
present in the training set was not included in testing; sim-
ilarly, we do not include an annotation in the test set when
a more specific annotation already exists in the training
set. In the NP protocol methods are trained using the set
of annotations acquired in or before the year 2009 and
they are tested on the annotations acquired for proteins
that were not annotated in or before 2009. In this setup,
the proteins used for training and the proteins used for
testing are disjoint sets. An overview of the NA and NP
setups is given in Fig. 1.

In our experiments we focused on yeast and human;
the number of proteins/annotations in the training/test
sets with respect to the three setups are given in Tables 1
and 2. We note that our yeast/human test sets contain 5—
10 times more proteins/annotations for each species and
subontology combination than in the CAFA1 and CAFA2
challenges: In CAFAL1 the test set consisted of 866 tar-
gets across 11 species consisting of five yeast proteins (one
with molecular function and five with biological process
annotations) and 285 human proteins (182 with molecu-
lar function and 195 with biological process annotations)
[5]. In the information made available during the CAFA2
workshop the organizers revealed that CAFA2 test sets
were composed of 656, 773 and 991 proteins with molec-
ular function, biological process and cellular component
annotations, respectively. These come from 27 species,
but the vast majority of them were human proteins. The
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Fig. 1 Overview of the NA and NP setups. We distinguish between three sets of annotations that are used to define the training and test set in the
two setups. Annotations accumulated between an initial time to until t1 (end of 2009 in our experiments) and form a set A, which is the training set
in both NA and NP. The set of annotations acquired for those proteins after t; form a set B, which is the test set in the NA setup. The set of
annotations acquired after t; for proteins that were unannotated before t; is denoted by the set C, and is used as the test set in the NP setup
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large number of annotations used here allowed us to
compute term-centric metrics in addition to the protein-
centric metrics used in CAFA.

To perform a fair comparison across setups we first
identified the GO subgraph that consists of only the GO
categories common to all three setups (CV, NA and NP).
Then we computed the evaluation measures described
next only on this subgraph.

Table 1 The number of proteins and the number of annotations
in the train and test sets with respect to the three setups for yeast

Analyses

To evaluate how different AFP methods perform on the
NA and NP tasks, and how these evaluation protocols
compare with CV, we compared the performance of
GOstruct, binary SVMs and Guilt by Association (GBA)
using the three evaluation setups (CV, NA and NP) using
data from yeast and human. The results for the protein-
centric F-max performance measure are shown in Fig. 2

Table 2 The number of proteins and the number of annotations
in the train and test sets with respect to the three setups for
human

Training set Test set Training set Test set
Setup Proteins Annots. Proteins Annots. Set. Proteins Annots. Proteins Annots.
F cv 1532 2185 383 546 F cv 4532 8467 1133 2116
NA 1367 1706 208 285 NA 4305 6898 799 1343
NP 1367 1706 521 677 NP 4305 6898 1344 2174
p cv 2752 5789 688 1447 P v 7533 31794 1883 7948
NA 2834 5161 633 990 NA 5824 12196 3301 13192
NP 2834 5161 604 1046 NP 5824 12196 3574 12973
C v 3731 7053 932 1763 C v 8440 19196 2110 4799
NA 4189 6968 813 1162 NA 5082 8185 2966 5511
NP 4189 6968 476 681 NP 5082 8185 5468 10200

F, P .and C represent molecular function, biological process and cellular component,
respectively. For the CV setup, numbers represent average values computed across
the training and test folds (5-fold CV)

F, P and C represent molecular function, biological process and cellular component,
respectively. For the CV setup, numbers represent average values computed across
the training and test folds (5-fold CV)
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Fig. 2 Performance comparison between CV, NA and NP. GOstruct,
binary SVMs and GBA are evaluated in cross-validation (CV), novel
annotation (NA) and novel proteins (NP) in yeast and human. The top,
middle and bottom panels depict the molecular function, biological
process and cellular component subontologies, respectively.
Performance is evaluated using the protein-centric F-max

(see Methods for precise definition of F-max and the other
performance measures). Additionally, p-values computed
using paired t-tests for the differences in performance
between CV and NA/NP are given in Tables S1 and S2 in
Additional file 1. It can be observed that accuracy com-
puted using CV is much higher than in the NA and NP
protocols in both human and yeast and across all three
GO hierarchies. This difference is even more pronounced
when using the term-centric F-max measure (see Figures
S1-S3 in Additional file 1). The only exception to this
trend is the similar performance of GOstruct in the NP
protocol, as discussed in more detail below. These results
suggest that in most cases CV is not a good proxy for the
performance in the more realistic NA and NP protocols.
The observed difference in performance between CV
and the NA and NP protocols can be traced to the evolu-
tion of GO curation. It is known in the AFP community
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that the process of acquiring GO annotations is highly
biased, leading to a distribution of categories that changes
over time [9]. Because machine learning methods rely on
the assumption that the distribution of test examples is
the same as the training examples, this bias makes the NA
and NP tasks more difficult than performing well in CV.
Given that CV mixes annotations across time, the training
and test sets are more similar in terms of the categories
annotated, and performance can therefore be expected to
be higher.

To demonstrate the differences in the label distribu-
tions in the training set versus the test set, we performed
the following analysis. First we computed the probability
(number of annotated proteins/total number of proteins)
of GO category i in the training and test sets for all
three setups, denoted by p{" and p*, respectively; in CV
setup the calculation was performed five times for each
fold and averaged across the five folds. The discrepancy
for category i is then defined as: |[p!" — pi|/(p" + pih).
The mean discrepancy and individual signed discrepancy
values (without the absolute value) are shown in Fig. 3
and Figures S4-S6 in Additional file 1. We observe that
the average discrepancy for NA and NP is significantly
higher than in the CV setup in the three subontologies
for both yeast and human, suggesting that the label dis-
tributions between training and test sets in NA and NP is
consistently different from that in CV.

We hypothesize that this characteristic is at least partly
responsible for the lower performance in the NA and NP
setups. To provide evidence for this hypothesis, we com-
puted the correlation between area under the receiver
operating characteristic curve (AUC) scores and the dis-
crepancy values for each GO category. As illustrated
in Figure S7 in Additional file 1, the AUC scores are
negatively correlated with the discrepancy values, suggest-
ing that for GO categories that show a larger difference
between the training and test probabilities the perfor-
mance tends to be lower. This is more pronounced for NA
than NP, which is in agreement with our observation of
lower accuracy for the NA protocol, as discussed below.

To further explore the differences between the setups,
we considered the observation of Gillis and Pavlidis
[28] that node degree, which is an indicator of multi-
functionality, is highly correlated with classifier accuracy
as measured by CV. We ran a similar experiment: for each
setup we computed the correlation between each of the
three classifiers’ AUC scores across GO terms in the bio-
logical process subontology with a simple classifier that
predicts each GO term with a confidence given by the cor-
responding gene’s degree. The highest correlations were
observed in the CV setup, followed by NP and NA (see
Table S3 in Additional file 1); in the NA setup some of the
correlations were insignificant, and even negative. This
suggests that in the NA setup, the classifier cannot make
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Fig. 3 Label distribution comparison between CV, NA and NP. First we computed the probability (number of annotated proteins/number of all

't respectively; in the CV setup the calculation was

performed five times for each fold and averaged across the five folds. The discrepancy for category i is then defined as: [p!" — pi*'| /(p!" + pI*"). The
average discrepancy is shown in top left panel. p-values based on paired t-tests for CV vs NA and CV vs NP in all three subontologies for both species
are less than 1E — 4 or 10~%. The individual signed discrepancy values (without the absolute value) are shown in the other three panels in sorted

use of information about node degree as well as in the
other setups, explaining its lower performance. We also
observe significant correlations between the performance
of the node degree classifier and the discrepancy in term
prevalence (Figure S8 in Additional file 1). Another fac-
tor worth exploring is the presence of critical edges, which
are edges whose removal has a strong effect on classifier
performance [27].

It is also interesting to note that the key observation of
NA and NP performance being lower than CV is not due
to a small-sample effect. As reported in Tables S4 and S5
in Additional file 1, by performing the evaluation only on
the well-represented GO categories with 50 or more anno-
tations, we see the same patterns as the evaluation on all
GO categories.

Another observation is that the ranking of methods on
the basis of CV performance is not the same as that which
is obtained using the other protocols. The protein-centric
F-max of binary SVMs (0.55) is higher than that of GBA
(0.41) in CV in the molecular function subontology in
human, but its performance on the NA task is equal to
that of GBA (0.20) (Fig. 2); the protein-centric F-max of
binary SVMs (0.53) is very similar to that of GBA (0.54)
in CV in the molecular function subontology in yeast, but

its performance in the NP task (0.25) is much lower than
that of GBA (0.37) (Fig. 2). These observations suggest
that a ranking of methods established using CV may not
reflect how they would rank on other AFP tasks, which has
implications for the design of method evaluation in AFP.

Among the three protocols, NA yielded the lowest accu-
racy for all methods, that is, the task of predicting novel
annotations for previously annotated proteins is harder
than prediction of novel annotations for unannotated
proteins.

There are several reasons why NA is harder than NP.
First, unlike the NP protocol, the NA evaluation proto-
col uses only the annotations acquired after 2009 as the
ground truth. This means that a small mistake in NA has
a larger impact on accuracy than what it would in NP. See
Figure S9 in Additional file 1 for a specific example that
illustrates this phenomenon. Second, our intuition sug-
gests that in the beginning a protein is annotated with
GO categories that are less specific or easier to experi-
mentally verify (i.e. low-hanging fruit), and as time goes
on, with the improvement of experimental assays, more
specific annotations are added. We believe this is respon-
sible for making the NA problem harder than NP. For
the GOstruct method the difference between CV and NA
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accuracy is the most pronounced, although it is still the
best-performing method.

When it comes to the NP task, we observe different
trends across methods. In this task, GOstruct performs
almost equally well as in CV, as can be seen in Fig. 2,
whereas all the other methods show a much bigger decline
in performance. This can be attributed to the fact that
GOstruct uses the set of all combinations of GO cate-
gories in the training set as its set of candidate labels. As a
result, it is likely that when predicting on currently unan-
notated proteins those candidate labels more closely rep-
resent the GO category combinations that are expected to
be annotated in these new proteins. The two other binary
classifiers, binary SVMs and GBA, do not use this infor-
mation, and they struggle to achieve the same level of
performance as in CV. But their performance in the NP
task is still always better than in the NA task.

Our final observation is that the ranking of methods
varies between evaluation metrics. We compared per-
formance measured using protein-centric F-max, which
was used in the CAFA competitions, with performance
measured using the term-centric F-max (complete results
using term-centric F-max and term-centric AUC are
shown in Tables S6 and S7 in Additional file 1. The term-
centric F-max of binary SVMs (0.12) is significantly higher
than that of GBA on the NA task (0.08) in the molecular
function subontology in human (p value: 7.03E-07 based
on paired t-test; see Table S7 in Additional file 1), but the
protein-centric F-max of the two methods are equal (0.20)
(Fig. 2). This suggests that the choice of performance met-
ric can have an impact on the rankings between methods
on a particular task. The shortcomings of protein-centric
measures are well known, namely the over-emphasis on
accuracy for GO categories that have many annotations,
that are less specific and that are not as informative.
However, the limited time-frame for acquiring new anno-
tations for a CAFA-like competition precludes the use of
term-centric measures unless a large number of anno-
tations are obtained for very specific functions. In our
experiments we used a 5-year time frame for acquiring
new annotations, whereas the CAFA experiment had only
a few months [29].

Discussion

Our study has multiple implications for the field of AFP.
Our results demonstrate that the two AFP subtasks of
making predictions on annotated proteins and previously
unannotated proteins are much more difficult than per-
forming well in CV, especially the task of predicting
annotations for already annotated proteins.

This suggests that the task of predicting annotations for
already annotated proteins could benefit from algorithms
that explicitly use existing annotations to better rank
novel predicted annotations. This can be accomplished
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in various ways, one of the simplest of which is to use
the existing annotations as features and extending them
e.g. using a nearest neighbor approach (see e.g. [30]). It is
worth exploring how both existing annotations and other
data can be used together for this task; with methods
such as GOstruct and label-reconciliation methods such
as described in Guan et al. [31], information on existing
annotations can be encoded in the inference procedure
itself.

Another important observation is that different meth-
ods are affected differently by the difficulty of the two AFP
tasks, leading to different rankings of AFP methods under
different evaluation protocols. For AFP practitioners this
implies that using CV is not a good proxy for the per-
formance in the more realistic AFP tasks, an observation
that should be taken into account in performing model
selection. Our focus in this study has been on methods
that perform function prediction in a given species, and it
remains to be seen to what extent our observations apply
to nearest-neighbor type homology-based methods that
are also commonly used in this field.

Finally, we observed that different performance mea-
sures can lead to different rankings of AFP methods, and
more specifically, a difference when comparing protein-
centric and term-centric performance. Although we rec-
ognize that in a CAFA-like competition it is not realistic
to use term-centric performance, our results should con-
tribute to the ongoing conversation in the AFP community
on the appropriate way to evaluate AFP methods, sug-
gesting that the use of multiple evaluation measures is
necessary to accurately compare AFP methods.

Methods
Each AFP method provides a confidence score for each
of its predictions. Following the same procedure that was
used in CAFA [5] these scores are recursively propagated
upwards towards the root by assigning the highest score
among children to their parent term. The true path rule
is also applied to the ground truth in all three setups.
However, in the NA setup, the older annotations (i.e.
annotations acquired before 2009) are removed from the
ground truth used for testing. By using a range of thresh-
olds on these propagated confidence scores we compute
the following protein-centric and term-centric measures.
In what follows N denotes the number of proteins and M
is the number of GO categories. Protein-centric precision
and recall at a threshold ¢ are defined as

N
1 TP;(t)
PC — E - s
o=y £ TPi(t) + FPi(t)’
N
1 TP;(t)
pC = E I
o=y £ TPi(t) + FNi(8)’
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where TP;(t), FP;(t) and FN;(t) are the number of true
positives, number of false positives and number of false
negatives with respect to protein i at threshold ¢. Now we
can define protein-centric F-max as
2PPE(£)RP (¢

F-maxP® = max M
t PPe(t) + RPE(t)
Precision and recall for a GO category j are defined as
TP;(¢)

5 = TPi(t) + EP;(2)’

TP;(t)
TP;(t) + FN;(t)’
where TP;(t), FP;j(¢t) and FN;(t) are the number of true
positives, number of false positives and number of false

negatives with respect to GO category ; at threshold ¢,
respectively. Then, F-max for GO category j is defined as

2P;(£)R;(2)
F-max; = max —————.
t Pi(t) +Ri(t)
An overall term-centric F-max (F-max') is obtained by
finding the mean of the above individual values.

Rl‘(t) =

Features
Each method was trained and tested using the same set of
features and labels, prepared as described below.

GO annotations

We extracted GO annotations from the Gene Ontology
website [11] and Uniprot-goa [12]. We ignored the root
categories of the three subontologies. We also ignored the
category ‘protein-binding, which is uninformative, as also
done in the CAFA1 challenge. We excluded all annota-
tions that were obtained by computational methods, and
we also did not include GO annotations with evidence
codes that suggest that the annotation was derived from
an interaction assay (i.e. only the evidence codes EXP,
IDA, IMP, IGI, IEP and TAS were included). We also
removed GO categories with fewer than 10 proteins were
annotated.

Trans/Loc

We generated three sets of features using amino acid
sequence properties: localization features, transmem-
brane features and low-complexity features described
elsewhere [13]. The localization of a protein can be
informative about its functions because many biological
processes are known to be localized to certain cellu-
lar compartments [14]. We used the localization signals
computed from the WOLF PSORT program [15] as local-
ization features. The number of transmembrane domains
a protein has can be informative of function. For exam-
ple, transmembrane proteins are known to be associated
with functions that involve transport of various molecules.
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We used TMHMM [16] to predict the number of trans-
membrane domains of each protein and this number was
associated with an indicator variable. Low complexity
regions are known to have an effect on protein function
[17]. We used a sliding window approach (window length
= 20) to identify the region with the lowest number of dis-
tinct amino acids and used the composition of that region
as the representation of that region.

Homology

Homology to annotated proteins in other species was cap-
tured using an approach similar to GOtcha scores, as
suggested in [3], and also used successfully by Radivojac’s
team in the first CAFA competition [5]. Each protein is
characterized by a feature vector where the jth feature is a
confidence score that the protein is similar to proteins that
are annotated with the jth GO category. Let S; be the set of
all sequences annotated with GO category j and let e(s, s')
be the e-value reported by BLAST+ [18] for the alignment
of sequences s and s’ when querying s against the database
containing s’. We define the e-max score for protein s and
GO category as:

e-max;j(s) = rr/leg_((—log(e(s, s")/10)).

This is a simpler version of GOtcha scores, observed to
perform slightly better in preliminary experiments. The
e-max scores efficiently integrate evidence for a given
GO category across multiple species, and a protein is
represented as a vector of variables where component j
provides the e-max-score for GO category j. When run-
ning BLAST+ we used psiblast with one iteration on a
database composed of all annotated sequences from every
species except the target species. For example, when run-
ning BLAST+ for computing e-max-scores for yeast, the
query consisted of all annotated yeast sequences and the
database was composed of the annotated sequences from
rest of the species. This approach ensures that annotations
of the test sequences are not used by the classifier dur-
ing the training phase. Additionally, we filtered out low
complexity regions using the built-in SEG filter.

Network

We extracted protein-protein interactions and other
functional association network data (protein-protein
interactions, co-expression, protein co-occurrence, etc.)
from BioGRID 3.2.106 [19], STRING 9.1 [20] and
GeneMANIA 3.1.2 [21] in two species: human and
yeast. The BioGRID database provides protein-protein
interaction networks acquired from physical and genetic
interaction experiments. STRING provides networks
based on several different evidence channels (co-
expression, co-occurrence, fusion, neighborhood, genetic
interactions, physical interactions, etc.). For a given type
of functional association data we combined edges from
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the two databases by taking the union of interactions
from BioGRID and STRING and represented each gene
by a vector of variables, where component i indicates if
the corresponding protein interacts with protein i in the
combined network. The GeneMANIA website provides a
large number of protein-protein interaction and associa-
tion networks generated using several types of evidence:
co-expression, co-localization, genetic interactions, phys-
ical interactions and predicted interactions. A gene is
represented by a vector of variables for each network,
where component i indicates if the corresponding pro-
tein interacts with protein i with respect to that particular
network.

Literature

If a protein is mentioned in the vicinity of a functional
category in the literature (a co-mention) it is likely that
this protein may be associated with that function. To
make use of this source of information we extracted
protein-functional category co-mentions using the natu-
ral language processing pipeline described in [22] from
all Medline abstracts available on 23 October 2013 and
full-text articles available from the PubMed Open Access
Collection (PMCOA) on 06 November 2013.

The co-mentions we considered are the pairs of pro-
tein name and GO category mentioned in the document
within a specified span. We used two spans: sentence and
non-sentence. Sentence co-mentions only consider pro-
teins and GO categories mentioned in the same sentence,
whereas non-sentence co-mentions consider such pairs
mentioned together in the same paragraph or abstract but
not within the same sentence.

We provided the abstracts and full-text documents
(one paragraph at a time) as input to our text mining
pipeline. It detected protein entities in the given text and
mapped them to UniProt identifiers through a specially
constructed dictionary. This dictionary consists of all
yeast and human target proteins from CAFA2. Similarly,
another dictionary based on GO categories available on
13 November 2013 is used to recognize GO categories in
the text. Finally the pipeline outputs the protein names
and GO categories along with the counts of how often
they appear together within the sentence or non-sentence
spans.

A protein is represented by two vectors in which the
ith element in each vector gives the number of times that
protein is co-mentioned with the GO category i within
either a sentence or non-sentence span. The vectors are
concatenated to form the overall representation.

Models

We used following three AFP approaches in our experi-
ments: GOstruct [4], a collection of binary SVMs, and a
network-based guilt-by-association method (GBA).
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GOstruct

GOstruct [4] is an AFP method that uses a structured
SVM [23], which allows it to explicitly model GO term
prediction as a hierarchical multi-label prediction prob-
lem. The structured SVM can address prediction prob-
lems in which the labels, or outputs, have complex inter-
relationships; in the AFP setup, this allows us to use a
single classifier for each of the GO subontologies. Like
other structured-output methods, the GOstruct struc-
tured SVM learns a compatibility function that models the
association between a given input and a structured output
[23], as described next. Let X be the input space where
proteins are represented and let ) be the space of labels
(GO categories). The set of GO categories annotated to
a given gene is collectively referred to as its (structured)
label. ) represents each GO subontology in a vector space
where component i represents category i. Given a training
set {(x;, y)}7_, where x;eX and y;e), the compatibil-
ity function f : X x Y +— R maps input-output pairs to
a score that indicates the strength of the association of an
input to a set of GO categories. The predicted label ¥ for
an input x can then be obtained using the argmax opera-
tor as j = argmaxyey, f(x,y) where ), C ) is the set of
all candidate labels. In this work we use the combinations
of all categories in the training set as the set of candidate
labels ).

To obtain correct classification, the compatibility value
of the true label (correct set of GO annotations) of an
input needs to be higher than that of any other candidate
label. GOstruct uses structured SVM training in which
this is used as a soft constraint; it tries to maximize the
margin, or the difference between the compatibility value
for the actual label and the compatibility for the next
best candidate [23]. In the structured-output setting, ker-
nels correspond to dot products in the joint input-output
feature space, and they are functions of both inputs and
outputs. GOstruct uses a joint kernel that is the product
of the input-space and the output-space kernels:

K((x1,y1), (x2,¥2)) = Kx (%1, %2)Ky (¥1,¥2)-

Different sources of data are combined by adding linear
kernels at the input-space level, and for the output space
we use a linear kernel between label vectors. Each kernel
is normalized according to

Korm(z1,22) = K(z1,22) /v K (21, 21)K (22, 22)

before being used to construct the joint input-output ker-
nel. The Strut library [24] with default parameter settings
was used for running GOstruct.

Binary SVMs

We trained a collection of binary SVMs, each trained on
a single GO category. Binary SVMs were trained using
the PyML [25] machine learning library with default



Kahanda et al. GigaScience (2015) 4:41

parameter settings. The SVMs used the same input-space
kernels as GOstruct.

GBA

GBA is the in-house Python implementation of the sim-
plest form of guilt-by-association [26] AFP algorithm (i.e.
neighbor-voting) also called the Basic GBA (BGBA) [27].
It is a binary classifier that computes a confidence score
with respect to a given test protein and a GO category by
using the connectivity of the test protein to other proteins
annotated with that GO category in a given input net-
work. More specifically, this score is equal to the fraction
of direct neighbors that are annotated with that category.
The kernel used for the SVM methods was used as a
network for the GBA procedure.

Availability of supporting data

The data sets supporting the results of this article are
available in the GigaScience GigaDB repository, [32]. This
contains all the input data (both features and labels) and
predictions from the three methods (GOstruct, SVM and
GBA).

Additional file

Additional file 1: Supplementary material. All the tables and figures in
this file are listed below. Table S1. Difference in performance between CV
and NA/NP for yeast. Table S2. Difference in performance between CV and
NA/NP for human. Figure S1. Performance comparison between CV, NA
and NP in molecular function subontology for yeast and human. Figure
S2. Performance comparison between CV, NA and NP in biological process
subontology for yeast and human. Figure S3. Performance comparison
between CV, NA and NP in cellular component subontology for yeast and
human. Figure S4. Signed discrepancy (between probability of each GO
category in train and test sets) for molecular function subontology of yeast.
Figure S5. Signed discrepancy (between probability of each GO category
in train and test sets) for biological process subontology of yeast. Figure
S6. Signed discrepancy (between probability of each GO category in train
and test sets) for cellular component subontology of yeast. Figure S7.
Pearson correlation coefficient between discrepancy of each GO category
and its individual AUC. Table S3. Pearson correlation coefficient between
the performance of the node degree classifier (NDC) of each GO category
and its individual AUC. Figure S8. Pearson correlation coefficient between
discrepancy of each GO category and its individual AUC obtained by the
NDC classifier. Table S4. Performance comparison between CV, NA and NP
in all three subontologies for yeast for well-represented GO categories.
Table S5. Performance comparison between CV, NA and NP in all three
subontologies for human for well-represented GO categories. Figure S9.
Comparison between the NA and NP evaluation protocols. Table S6.
Performance comparison between CV, NA and NP in all three
subontologies for yeast. Table S7. Performance comparison between CV,
NA and NP in all three subontologies for human. (PDF 590 kb)
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