n
(Glgél)ENi; E

VirAmp

VirAmp is a web-based semi-de novo fast virus
genome assembly pipeline, designed for extremely
high coverage NGS data. VirAmp is a collection of

existing tools, combined into a single Galaxy interface.
Users without further computational knowledge can
easily operate the pipeline.
http://viramp.com
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Abstract

Background: Advances in next generation sequencing make it possible to obtain high-coverage sequence data for
large numbers of viral strains in a short time. However, since most bioinformatics tools are developed for command
line use, the selection and accessibility of computational tools for genome assembly and variation analysis limits the
ability of individual labs to perform further bioinformatics analysis.

Findings: We have developed a multi-step viral genome assembly pipeline named VirAmp, which combines existing
tools and techniques and presents them to end users via a web-enabled Galaxy interface. Our pipeline allows users to
assemble, analyze, and interpret high coverage viral sequencing data with an ease and efficiency that was not possible
previously. Our software makes a large number of genome assembly and related tools available to life scientists and
automates the currently recommended best practices into a single, easy to use interface. We tested our pipeline with
three different datasets from human herpes simplex virus (HSV).

Conclusions: VirAmp provides a user-friendly interface and a complete pipeline for viral genome analysis. We make
our software available via an Amazon Elastic Cloud disk image that can be easily launched by anyone with an Amazon
web service account. A fully functional demonstration instance of our system can be found at http://viramp.com/. We

also maintain detailed documentation on each tool and methodology at http://docs.viramp.com.

Keywords: Next generation sequencing, herpes simplex virus, viral genome, assembly pipeline, variation analysis

Findings

Background

Recent assembler evaluations such as GAGE [1] and
Assemblathon 2 [2] have indicated that parameter
tuning and adapting the assembly process to match
properties of the genome are essential steps for obtaining
high quality assemblies. This demonstrates the need for
tools that provide customizable pipelines that life scientists
can run repeatedly to evaluate the effects of the various
parameters on the quality of the assembly. In this paper we
present VirAmp, a virus assembly pipeline designed to
process high coverage shotgun sequencing data obtained
from virus genomes. VirAmp combines into a single
Galaxy interface [3] a set of existing tools and best
practices that facilitate straightforward multistep, semi
de novo assembly approaches.
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Advances in high-throughput sequencing make it
possible to sequence a large number of viral genomes at
high coverage even in a single sequencing run. At the
same time viral genomics presents scientists with a
number of unique challenges and requires tools and
techniques developed specifically to account for the
much faster mutation and recombination rates that
these genomes typically exhibit [4,5]. As a consequence,
there is a high demand for tools that can efficiently
perform various analysis tasks commonly associated with
viral assemblies. Detecting variation by mapping against
a reference genome is a frequently used methodology
when studying higher order eukaryote genomes. This
strategy is appropriate for the analysis of SNPs, small
insertions and deletions (indels), and mutations that
involve only a few bases. Due to faster mutation rates,
short generation times, and more intense selective
pressures, viral genomes may be genetically distant from
the known reference genomes. De novo assembly solves
some of these challenges at the cost of added algorithmic
and computational complexity. Caveats of de novo assembly
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include the uncertain nature of gaps and the condensed size
of short sequence repeats, which are assembled at the most
compact size supported by the data. However these caveats
are outweighed by the ability of de novo assembly to detect
regions that alignment cannot, such as large insertions or
rearrangements, and sequences that diverge significantly
from prior reference genomes.

There are multiple approaches to de novo assembly.
Overlap-layout-consensus, or OLC, uses multiple sequence
alignment (MSA) to orient and connect the short sequence
reads and produce a final consensus sequence [1,6]. This
approach works well for Sanger sequencing data, but it is
less well suited for next-generation sequencing data which
commonly consists of much more numerous, but shorter
sequencing reads. In contrast, the de Bruijn graph-based
algorithms assemble data by representing the genome via a
set of short subsequences (or k-mers) [1,7]. For these algo-
rithms the sub-sequence size (k-mer size) becomes an
essential parameter of the process. Contigs (or extended
sequences built by overlapping reads) that are created
using a data representation of short k-mers tend to be
smaller but contain fewer errors. In contrast, contigs built
from longer k-mers can reconstruct repeats more precisely,
but at the cost of introducing minor errors and variations
that can lead to gaps or breaks in the final assembly. De
Bruijn graph construction is non-deterministic, in that it
depends on the order of sequence reads, however this
rarely affects the performance or downstream analysis. In
general, assemblies generated from de Bruijn graph based
assemblers tend to contain smaller contigs compared to
those obtained from overlap-layout-consensus algorithms.

The constrained size of viral genomes, along with the
increasing yield of sequencing instrumentation and
methods, have combined to give researchers extremely
high rates of coverage when sequencing viral genomes
using this approach. While theoretically this high coverage
is not needed, in practice it may be necessary so that a suffi-
cient amount of data is obtained from hard-to-sequence
regions of the genome, such as areas with high G+ C
content or secondary structures. As a consequence,
the coverage of a single base of a viral genome may
vary from tens to tens of thousands of reads. This
radical variability in read coverage introduces specific
algorithmic challenges, as most tools and techniques
were not designed to handle data with such properties.
Methodologies such as digital normalization [8] have been
introduced to reduce redundant information in deep
sequencing data. In this paper we demonstrate that by
combining several existing approaches and techniques we
can produce nearly complete high quality viral assemblies
in less than two hours on a single CPU computer with 4
GB of memory. We validated our pipeline using sequencing
data from both laboratory and clinical strains of HSV-1,
which represent a wide range of variation with respect to

the reference genome of HSV-1, including SNPs, indels,
and short sequence repeats (SSRs) that are present in many
viral genomes.

Assembly pipeline description

The VirAmp pipeline consists of a series of connected
analytical methods that were found to be necessary for
optimal assembly of viral genomes. As shown in Figure 1,
the main steps consist of: 1) quality control of input data,
2) coverage reduction, 3) de novo genome assembly, 4)
reference-guided genome assembly, 5) information recovery
and gap-filling, and 6) quality evaluation of final genome
assembly. Additional optional steps include 7) final gap
closing, 8) assembling single-end sequence reads, and 9)
additional ways to access the VirAmp pipeline. Below we
discuss in more detail the rationale for each step:

1. Quality control of input data. Various artifacts
and errors inherent to the sequencing process may
affect the data obtained from a sequencing
instrument. Correcting these may require various
trimming and filtering steps that remove unreliable
sections of the data. In our pipeline the default
trimming is performed via the seqtk toolkit [9],
which implements the Phred algorithm and is able
to remove low-quality bases from the end of a
sequence read. In addition, we provide a collection
of optional quality control tools that offer functions
such as polyA and adaptor clipping, as well as base
quality trimming. We also provide tools to filter data
for contaminating sequence reads derived from the
host cell genome, using Bowtie2 [10] as the underlying
aligner. Users may choose between the various tools
and apply the quality filtering before sending the data
into later steps of the pipeline. Detailed documentation
is provided for each of these tools.

2. Coverage reduction. The highly variable coverage
inherent to deep sequencing of viral genomes poses
specific challenges to most genome assemblers.
Reads that fall into very high coverage areas do not
provide new information, yet they can negatively
affect the performance of the algorithms. Since these
redundant reads may also be affected by sequencing
errors, they may increase the dimensionality of the
data, further reducing the efficiency of the assembly
process. To correct for redundant coverage we
integrate a digital normalization step via the
diginorm [8] approach into our pipeline. Digital
normalization is a computational algorithm that uses
k-mer abundance to estimate the sequence depth of
the unassembled genome. Diginorm systemizes the
coverage of short reads, discards redundant reads,
and reduces the impact of sampling variation and
sequencing errors. Digital normalization will reduce
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Figure 1 VirAmp pipeline overview. The diagram illustrates the progression of the VirAmp pipeline. A) First, we perform a quality trimming of the
raw data, then reduce extremely high coverage data (top trace, red) to a reasonable depth and even out the coverage variation (bottom trace,
blue; usually to ~100x). B) Next, a multi-step semi-de novo strategy is applied for core assembly: (I) a de novo assembler is run multiple times using
different k-mer sizes, to assemble the short sequence reads into a set of long contigs; (Il) contigs from different k-mer sets are oriented by aligning to
the reference genome and then are connected into scaffolds based on the pairwise alignment. C) Data from the spacing of paired-end reads is used
to extend the contigs, potentially closing gaps and/or joining contigs into larger scaffolds. D) Multiple tools are implemented for assembly evaluation
and analysis of variation. These include basic assembly statistics, comparison of the new assembly to a reference genome, and identification of SNPs

and repeats.

coverage to a predefined cutoff while retaining most
of the reads covering low coverage regions.

3. De novo genome assembly. Our pipeline operates
via a two-step strategy that integrates different
assembly methods, thus benefiting from information
produced by de novo assembly protocols as well as
reference guided multiple sequence alignment
algorithms (Step 4 below). This allows us to capture
a larger number of variations than using either
method separately. After coverage reduction via
diginorm, our pipeline uses de novo assembly to place
the short reads into longer blocks of continuous
sequence called contigs. Because the assembly output
depends on the choice of k-mer size, we run multiple
rounds of de novo assembly with different k-mers, and
then combine them into a single dataset that becomes

the input for the next step in the pipeline. Our default
installation offers three commonly used assemblers:
a. Velvet [7] is one of the earliest assemblers using
the de Bruijn graph algorithm. It is designed as a
general assembler for shotgun sequencing. Velvet
is set as our default choice for de novo assembly.
. SPAdes [11] is an assembler designed for standard
isolates and single-cell Multiple Displacement
Amplification (MDA) bacterial assemblies.
SPAdes uses an iterative approach to implement a
multisized de Bruijn graph algorithm with multiple
k-mer sizes. SPAdes is also available as a complete
pipeline, but here we use only the core assembler.
VICUNA [4] is an OLC algorithm-based de novo
approach that specifically targets assembly of
virus genomes with a high mutation rate. This
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tool can handle deep sequencing data with high
variation, at the cost of potentially longer
runtimes. As for SPAdes, only the core
assembler of VICUNA is used here.

4. Reference-guided genome assembly. Once we

obtain contigs from the de novo assembly step,
the VirAmp pipeline will further orient and connect

them into a draft genome using the reference-guided

assembler AMOScmp [6]. AMOScmp uses an
alignment-layout-consensus algorithm to orient the
short contigs by aligning to a reference genome.

AMOScmp then connects the short contigs together

into a new draft genome by using information

from a round of multiple sequence alignment.

This algorithm is a modified version of the traditional
OLC algorithm, which was originally designed for
Sanger sequencing [12].

5. Information recovery and gap filling.

a. Scaffold extension and connection with
SSPACE. To ensure that no information has
been discarded at this stage, VirAmp makes use
of a tool called SSPACE for further scaffolding
and contig extension [13]. SSPACE is a stand-

alone scaffolding tool, which we implement using

the un-normalized input data to provide as many
sequences as possible for assembly correction
and expansion. SSPACE begins by using BWA
[14] to align paired-end or mate-pair sequence
reads back to the contigs assembled by
AMOScmp. SSPACE can then extend these
contigs by searching for unmapped reads whose
mate-pair is located near the edge of a gap, and
estimating the placement of these paired reads
into the gap region(s). SSPACE then uses the
spacing between paired-end reads to scaffold
contigs together, forming longer stretches of
intact sequence for the final genome assembly.

SSPACE accounts for any information loss during

the digital normalization and coverage reduction,
since it extends and connects the contigs using
the complete original dataset.

b. Single linear sequence creation. A final assembly

with a set of ~5-10 contigs is created upon the
completion of SSPACE. These contigs are listed in
the order that they align to the reference genome,
producing a linear genome that may contain
several gaps. An optional step is provided to
connect the contigs into one sequence by adding
Ns to represent ambiguous bases

between contigs. In this case, the number of

Ns is estimated from the spacing found in the
reference genome.

6. Quality evaluation of final genome assembly. To

help researchers better understand and interpret

their viral genome assembly results, we provide

utilities for genome assessment and variation

discovery.

a. Assembly evaluation metrics via QUAST.
QUAST [15] is a quality assessment tool for
evaluating genome assemblies. QUAST uses the
MUMmer [16] aligner to analyze the newly
assembled genome and compute reference-based
and reference-free metrics. Important statistics
such as contig number, N50 and NG50 are
provided as part of this summary. N50 and
NG50 are common metrics for comparing how
well different assembly methods work for a given
genome or dataset. To compute these statistics,
all contigs are placed in order from longest to
shortest. The sum of all contig sizes is recorded
as the maximum possible assembly length
(since duplicate and overlapping contigs exist,
this is almost always longer than the target
genome). Moving in order from longest to
shortest, the N50 statistic represents the size of
the contig at which half the maximum assembly
length has been achieved. Large N50 values
reflect assemblies with large contigs, without an
excess of small contigs. NG50 is very similar to
N50, except that the comparison is to the reference
genome length. A large NG50 value indicates that
a majority of the reference genome length is
encompassed by contigs of this size or longer,
which is beneficial for the quality of the final
assembly. A full version of the QUAST report is
provided for users’ further exploration.

b. Assembly-reference comparison. The
assembly-reference comparison report provides
details about the alignment of the newly assembled
genome against the viral reference genome.
Coordinates and percent identity are provided
for each aligned region between the two sequences.
This helps the user to identify large indels, as well
as other complex structural variations. Table 1
demonstrates an example of the comparison report.

c. Circos graphs. Circos [17] is a software package
that is used to visualize data in a circular layout.
Our pipeline produces a circular graph as part
of the assembly-reference comparison report
(Figure 2). The right-hand side of the circle
contains a linear representation of the reference
genome, and the new draft genome is displayed
as a set of ordered contigs on the left side of the
circle. Arcs connect the contigs of the draft genome
on the left, to the matched sections of the reference
genome on the right. Circos provides a visual
overview of the alignment between the draft
genome and the reference genome.
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Table 1 Overview of the assembly-reference comparison

Ref_start Ref_end Contig_start Contig_end % ldentity References Contigs
1 62457 288 62722 99.46 JIN555585_truncated Ctg_1
53191 53334 53597 53454 100.00 JN555585_truncated Ctg_1
62638 108009 62722 108094 99.15 JIN555585_truncated Ctg_1
108111 108301 186 1 92.75 JN555585_truncated Ctg_1
108299 108496 5 193 92.96 JN555585_truncated Ctg_2
108497 116585 296 8423 97.10 JIN555585_truncated Ctg_2
116652 116924 8421 8687 93.04 JN555585_truncated Ctg_2
117090 117383 9718 9042 86.50 JN555585_truncated Ctg_2
117497 117634 9044 9181 100.00 JN555585_truncated Ctg_2
117897 123237 1 5261 97.37 JN555585_truncated Ctg_3
123245 134543 1 11337 98.74 JN555585_truncated Ctg_4
134593 136376 1 1754 97.42 JIN555585_truncated Ctg_5

d. Variation analysis. VirAmp provides a collection
of tools built upon the MUMmer [16] package
for variation identification. SNP analysis produces
a list of SNPs as a VCF (Variant Call Format) file.

Structural repeats and tandem repeats can also be

identified using tools we provided. BWA [14] is
used to map the sequence reads back to the

new assembly, which offers a means to verify

the new assembly, and to detect minor variations
that may reflect polymorphisms in the genome
sequencing data.

7. Final gap closing. The end result of running our
pipeline is an assembly built from multiple long
contigs. Users have the option to generate two
versions of each genome. The first of these is a
multi-fasta file that usually contains a small number
of contigs in the order and orientation that they
align to the reference genome. We also produce a
second file that contains only one linear genome
sequence, which is generated by inserting Ns into
the gaps between subsequent contigs, so that the
linear draft genome closely corresponds to the
reference genome. We note that automated gap
closing may greatly oversimplify the complexities
of genomic rearrangements. Its use should be
restricted mainly to situations where a single linear
genome sequence is necessary, such as sequence
alignment between multiple strains. Gaps between
each contig should be assessed carefully before closing.
We recommend using the multi-fasta file for assembly
assessment and variation discovery, since this reflects
the most accurate outcome of the assembly process.

8. Assembling Single-end Reads. The use of paired-end
sequence read data is strongly recommended when
performing genome assemblies, because the larger
insert sizes allow the algorithms to better infer
positional location in the genome. However we

have also implemented an alternative assembly

pipeline for single-end reads. In this pipeline, the
SSPACE scaffolding is not used, since it depends on the
paired-end information to connect contigs. All other
modules are utilized in the single-end pipeline (digi-
norm, velvet/SPAdes/VICUNA and AMOScmp).

9. Additional ways to access the VirAmp pipeline.
The easiest path to utilize VirAmp is via the fully
functional demonstration website at http://
viramp.com/. All the modules and components of the
VirAmp pipeline come pre-installed and integrated
into a customized version of Galaxy [3]. Galaxy is an
open source, web-based platform that provides a web
interface for commonly used bioinformatics tools.
This facilitates use by researchers without
programming experience. Users can also choose to
launch their own VirAmp instance via an Amazon
Elastic Cloud machine image (AMI) that can be
easily launched by anyone with an Amazon web
service account. Support and updates to VirAmp are
documented in a GitHub repository (http://github.
com/SzparaLab/viramp-project).

VirAmp offers the ability to run a complete viral genome
assembly pipeline in a single step, with the required inputs
being only the raw FASTQ format data files and a reference
genome from a related species in FASTA format. The pipe-
line will then output the major results and visualizations.
We provide interfaces to operate each step separately, so
that those familiar with assembly tools can select and tune
individual steps. The program is hosted via the Amazon
Elastic cloud and we provide a customized AMI that other
labs can launch to serve their individual computational
needs. The disk images are fully customized and ready to
run upon launching; these require no additional system
management to operate. We provide detailed documenta-
tion on how to start a custom version of VirAmp at:
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Figure 2 Assembly-reference comparison via Circos graph. Circos graphs can be used to compare between an assembled genome and a
reference genome. Here we present the comparison of a newly assembled draft HSV-1 genome containing five scaffolds on the left semicircle
(colored bands), to the HSV-1 reference genome (NCBI JN555585) on the right semicircle (grey band). Each color represents one assembled
scaffold, and the grey band represents the reference genome. The gaps between scaffolds on the left indicate the breakpoints between contigs
that could not be joined by the VirAmp algorithms. These breakpoints indicate insufficient information, which could result from insertions,
inconsistent information about overlaps between two contigs, or regions that could not be assembled. Note that the length of the gap remains
the same for each breakpoint; this does not represents the length of an actual gap. Each tick mark represents 0.5 kb, with labels included every
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http://docs.viramp.com. A ready-to-use demonstration
instance of the VirAmp pipeline is also available at
http://viramp.com/ (Figure 3).

Viral sequence inputs to VirAmp

Viral genome sequencing data usually originates from
one of two approaches. The first involves targeted
sequencing of viral isolates of interest, which often
entails expansion of the virus population using host
cells or a host animal. This approach generates large
quantities of viral genetic material where the con-
taminating host sequences are identifiable and fairly
homogeneous. In contrast, the second common type
of viral genome sequencing stems from field or clinical
samples. In this approach the viral genome being sought
is not the majority genome present and there may be mul-
tiple, or even hundreds, of genomes from other species
contributing to the mix of nucleic acids. VirAmp accepts
sequence reads from either approach, and the quality of
the assembly output will reflect the purity and quantity
of viral sequence reads provided as input. Removal of

contaminating host or environmental sequence reads will
facilitate assembly of the target viral genome. Although
we have developed VirAmp for assembly of large (typically
DNA-based) virus genomes, RNA virus genomes that have
been reverse-transcribed for library preparation can also
be used as input.

To generate clean, paired sequencing reads for optimal
de novo assembly, it is important to remove sequences
that stem from low-quality base calls, technical artifacts,
or host genome contamination. This filtering can entail
the removal of whole sequence reads, or just the trimming
of bases from one end. Because the removal of host
sequences is usually virus and host-cell specific, we
recommend tools for this approach but cannot pro-
vide a universal approach with all possible host
genomes pre-loaded. The sample data included at the
http://viramp.com/ demonstration website has already
been filtered using the following approach.

We followed previously published approaches to
prepare HSV-1 DNA for sequencing [18,19]. Each viral
isolate was expanded using a cultured cell line, in this case


http://docs.viramp.com/
http://viramp.com/
http://viramp.com/

Wan et al. GigaScience (2015) 4:19

Analyze Data

. jools - Paired-end pipeline (version 1.0.0)

search tools <] File of Read 1:

("149: HSV-McKr_read_L fastq_+ |

Get Data Read_1 in paired-end sequencing

Entire Pipeline
Paired-end pipeline
Single-end pipeline
VIRAMP
QUALITY CONTROL
Trim Sequence by Quality
Trim Sequence by Bases
DIGINORM

File of Read 2:

150: HSV-McKr_read_3.fastg_*
Read_2 in paired-end sequencing
Reference genome:

1: JNS55585_truncated.fasta ¢
Create one linear genome sequence:

no *

Assembly settings:
Default Setting
Reduce the coverage

| defaultit's set to 350.

to run or tune individual steps.

ot Novo conmic [ e |
ASSEMBLING
Velvet
Quick Reference
2BAdes This runs the entire pipeline of the Virus Assembly Pipeline (VIRAMP) with
VICUNA default settings. For impatient users, you need at least three files:
read#1 and read#2 shotgun sequencing file in FASTA or FASTQ format,
SCAFFOLDING and a reference genome in FASTA format. If you know the insertion size of
e ferencergyided Scafolding your paired-end library, you may also change the number, Otherwise by

Figure 3 View of VirAmp input page. The VirAmp pipeline is presented in a Galaxy-based interface. Drop-down menus allow users to select input
files and carry out the entire pipeline using default settings. A full menu of component steps is available on the left, for advanced users who want

Using 15.1 GB
History [ -}
HSV-testing
7.8GB =
150: HSV- @8
McKr read 3.fastq
149: HSV- @0 R
McKr read 1.fastq
L @0 R

IN555585 truncated.fasta

African green monkey kidney epithelial cells (ATCC®
CCL-81"Vero cells). The viral DNA was isolated using a
previously described procedure to enrich for viral DNA
that is packaged in nucleocapsids [18,19]; this method
generally produces sequencing libraries that contain
10% or less contaminating sequence reads from the
host genome. Then, the FASTX-Toolkit was utilized
to remove or trim technical artifacts such as library
adapter sequences, fully monomeric reads, low qual-
ity bases, and sequences below a length minima
(http://hannonlab.cshl.edu/fastx_toolkit/). Next, we used a
bowtie alignment [10] to compare all sequencing reads
against the rhesus macaque (Macaca mulatta) genome
and removed any perfect matches. This genome was the
best available match to the host Vero cells used to grow
these HSV stocks. A final check removed any reads
missing their paired-end sequencing mate. Parameters for
these approaches have been previously described [18,19].

Pipeline evaluation

We evaluated our protocols by assembling data obtained
from the genome of HSV-1. HSV-1 is one of the most
prevalent human pathogens, infecting around 70% of
adults worldwide. In most cases it causes mild epithelial
lesions, but the virus remains infectious for a lifetime,
with sporadic recurrences that allow spread to new hosts
[20]. The reference strain HSV-1 17 has a genome of
152 kb (GenBank Accession JN555585). The genome
consists of a 108 kb unique long (UL) and a 13 kb
unique short (US) region, with each unique region
flanked by inverted copies of large structural repeats
(termed repeat long (RL) and repeat short (RS), with
lengths of 9.2 kb and 6.6 kb) [21]. For evaluation

purposes, we used a trimmed version of this reference
where the terminal copies of RL and RS have been
removed, leaving a sequence of 136 kb (Figure 2).
The removal of terminal repeats facilitates alignment
of de novo assembled contigs to the reference genome.
For evaluation, we used three datasets of 100 bp x 100 bp
paired-end reads sequenced by Illumina protocols. Each
dataset contained more than 30 million reads with
an average genome coverage of over 10,000-fold. The
observed average library fragment size without adaptors
was 350 bp.

To demonstrate the necessity and contribution of each
stage of the pipeline, we performed a QUAST assessment
[15] at every step of the process instead of just at the con-
clusion of the process, using data for a laboratory strain of
HSV-1 (Table 2). Figure 4 shows the basic statistics from
assembly evaluation of each step of the VirAmp pipeline.
We used the NG50 statistic as our metric since as
demonstrated in Assemblathon 2, it is a more appropriate
parameter than N50 when a reference genome is present
[2]. NGx is an extension of NG50, where x represents the
percent of reference genome bases encompassed by the
contigs (e.g. NG50 means 50% of reference genome).
Velvet was used for the de novo assembly step with
multiple k-mer sizes (k =35,45,55,65). The statistics for
this step (Figure 4, red line) represent the best assembly of
the above four sets (k = 65). With each successive step of
the VirAmp pipeline the ability of the contig collection to
minimally tile the viral genome improved (Figure 4A).
Additional assembly metrics improved as well, such as the
summed length of all contigs, the length of the largest
contig, and the NG50 (Figure 4B). After scaffolding
(Figure 4B, green line) the largest contig covered about
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Table 2 Performance comparison using different assembly pipelines

Virus' # reads Pipeline # contigs Largest N50 NG50  # fully un-aligned REAPR Run # thread
(x 10%) contig (bp) contigs score time (h) (4GB/CPU)
HSV-1 laboratory strain 33 VirAmp 5 108,094 108094 108,094 0O 128e+10 15 1
SPAdes 9,609 107,857 258 107,857 9582 412e+7 6 4
VICUNA 266 19,285 5,654 8,704 163 601e+8 8 6
HSV-1 w/ fluorescent insert 37 VirAmp 4 63,109 49971 49971 0 400e+9 25 1
SPAdes 5,946 39,441 273 13,888 5898 448e+7 7 4
VICUNA 101 33,391 9,822 7,644 60 903e+8 13 6
HSV-1 clinical isolate 87 VirAmp 3 117,134 117134 117134 0 124e+9 4 1
SPAdes 74,927 93,771 256 82,041 74,608 297e+8 21 4
VICUNA 424 23,611 2,786 7,136 383 2.19%+8 30 6

"Bold indicates abbreviation used in text, figures, and Additional file 1.

80% of the reference genome, which is more than 108 kb
out of 136 kb (Table 1).

We examined the starting and ending coordinates of
selected contigs from each step of the HSV-1 laboratory
strain assembly (Additional file 1). From this inspection,
we observed whether the gaps — missing bases between
the ending coordinates of one contig and the starting
coordinates of the next — had been narrowed or closed
in each step (Additional file 1). We found that both
the reference guided assembly step (AMOScmp) and
the scaffold extension and gap-filling step (SSPACE)
decreased the total number of gaps and narrowed the
remaining gaps. From thousands of contigs produced

by initial de novo assembly (Velvet), AMOScmp reduced
this complexity to less than fifteen contigs and SSPACE
yielded a total of just five contigs that spanned the
reference genome with only minor gaps (Figure 2 and
Additional file 1). By using digital normalization before
assembly, followed by using the full dataset for extension
and scaffolding after the assembly, we were able to
integrate the most amount of information from the
sequencing data into the assembly with reduced com-
putational resource usage.

Mapping the final assembly set of the laboratory HSV-1
strain back to the HSV-1 reference genome revealed few
overlaps between the contigs and suggested that this is an
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Figure 4 Statistics of assembly at each step of VirAmp. Cumulative data plots outputted by the QUAST package provide a visual overview of
individual assembly steps, for a laboratory strain of HSV-1 (Table 2). Successive contigs are plotted in order from longest to shortest. In both

graphs, the red line represents the output of the initial de novo assembly, the blue line represents the combination of multiple k-mer assemblies
using reference-guided assembly approaches, and the green line represents the output after scaffolding by SSPACE. A) The first graph highlights
the number of contigs (contig index, x-axis) needed to achieve the length of the trimmed reference genome (y-axis; 135 kb); this metric improves
with successive steps of the VirAmp pipeline. Only contigs longer than 500 bp were considered to be valid. B) The second graph plots the percent of
the genome (x-axis) covered as successive contigs are added, from longest to shortest. The y-axis intersect for each line is the length of the longest
contig, and the line drops according to length of each successive contig. The black vertical line indicates NG50. The total length, largest contig, and
NG5O0 all increase with each step of the VirAmp pipeline.
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almost linear genome (Figure 2). VirAmp provides an
option to connect these contigs into one linear gen-
ome, which may be helpful for downstream functional
analysis.

Comparing the performances of VirAmp with other
assembly pipelines

To assess the performance of our assembly pipeline, we
used three different HSV-1 sequencing datasets for
evaluation. We selected datasets from a virulent HSV-1
laboratory strain, a variant laboratory strain with a
fluorescent protein inserted into the genome, and a
clinical isolate of HSV-1. These datasets contain from
33 to 87 million Ilumina HiSeq reads of paired-end,
100 bp x 100 bp sequence (Table 2). Using previously
published approaches [18,19], we de-multiplexed these
sequence reads, trimmed off adaptor sequences, removed
low quality bases, removed sequencing artifacts, and
removed sequences matching the genome of the host cells
used for growing viral stocks. The Utilities menu of
VirAmp includes tools for these steps, but we did not
incorporate these into the default pipeline because we
anticipate user-customization at this phase (e.g. whether
or not to de-multiplex, choice of host genome, etc.). We
used the above datasets to compare our Velvet-based
pipeline with two other standalone assembly pipelines,
SPAdes [11] and VICUNA [4]. SPAdes is a pipeline
optimized for genome assemblies on the bacteria scale. The
SPAdes pipeline includes an error correction preprocessing
step as well as mismatch correction as a post-assembly
process. Its core assembler can make use of multiple k-mer
sizes, taking advantage of both small and large k-mers to
improve the assembly performance. Single-cell mode was
applied in SPAdes using the authors’ recommended k-mer
sizes (k=21, 33, 55). The VICUNA pipeline is an
alternative de novo assembly pipeline developed by
the Broad Institute specifically for virus genome assembly.
One of the advantages of VICUNA is that it performs a
pre-filtering step to keep only reference-genome-like
reads, which is extremely useful in host-contaminated
samples such as viruses. We performed multiple rounds
of VICUNA assembly and chose the best k-mer (k =21)
for this comparison. The core assemblers in both SPAdes
and VICUNA have been integrated into our pipeline so
that end-users may choose either one as alternatives to
the default Velvet assembler.

We compared the assemblies back to the trimmed
HSV-1 reference genome (136 kb), and used N50, NG50
and REAPR [22] scores to evaluate the performance of
each assembly method, as recommended by Assemblathon
2 [2] (Table 2). We considered any contigs longer than 500
bp as a valid assembly output. All basic statistics except
REAPR are calculated using a complete version of the
QUAST [15] report generated from our pipeline at the end

of the assembly. The additional metric used here, REAPR,
is a reference-free tool to evaluate the genome assemblies
[22]. This tool maps the paired reads back to the assem-
blies to evaluate accuracy per-base and per-scaffold. The
REAPR score here was computed using version 1.0.16
under default settings, except for setting the mapping
option —y to 0.9. The overall REAPR produces a score
integrating three metrics: error free bases, original
N50 and broken N50. This score summarizes aspects
of local accuracy, overall assembly performance, and
structural correctness at the scaffold level.

According to the evaluation statistics, the VirAmp
pipeline achieves the highest NG50 and REAPR score in
all three HSV-1 datasets (Table 2). In two of the three
datasets the largest VirAmp contig covered about 75% of
the whole genome. SPAdes retrieved one large contig
with a length similar to the longest contig of VirAmp,
but in all three test datasets more than 95% of the
SPAdes contigs cannot be properly aligned back to
the reference. This causes SPAdes to receive the lowest
N50 and REAPR score among the three assemblers.
VICUNA retrieved an assembly with a size similar to
the reference and an acceptable number of contigs,
but the largest contig it produced was only around
20kb, which is much shorter than the other two
assemblers.

In terms of computational resources, VirAmp analyzed
the above datasets on a single 4 GB RAM CPU machine
while neither SPAdes nor VICUNA could finish the job
successfully using the same machine. For a dataset with
~20,000-fold coverage on average (e.g. HSV-1 lab strain,
Table 2) VirAmp finished the assembly within 1.5 hours,
while the other two assemblers ran the same dataset
with multiple CPUs (4 for SPAdes and 6 for VICUNA)
with 4 GB RAM and took more than double the time to
complete.

Conclusion

In this paper we describe a web-based virus genome
assembly platform, VirAmp, which can be used to
assemble high throughput sequencing data. Our pipeline
makes use of several existing programs and connects
them in a convenient interface. The pipeline makes
use of recommended practices and can assemble
extremely high coverage viral genome data with min-
imal computational resources. In addition, we provide
a series of reporting and genome assembly analysis
tools for evaluating the assemblies. All of our tools
are wrapped into a Galaxy instance that individual
groups can utilize at the demonstration website or
run independently. The Galaxy platform and default
pipeline will facilitate use by researchers without advanced
programming skills, or without access to high-performance
computing clusters.
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Availability and requirements

Project Name: VirAmp: A Galaxy-based virus genome
assembly pipeline

Project Homepage: http://viramp.com/

Operation System: Linux

Programming language: Python, Bash

Other requirements: None to use demonstration
website or install using GitHub repository; Amazon web
service account to launch own AMI

License: MIT License

Any restrictions to use by non-academics: None

Availability of supporting data

All tools described, as well as testing datasets, are available
at the VirAmp demonstration website: http://viramp.com/.
A GitHub repository is available for the present AMI and
all future updates: http://github.com/Szparalab/viramp-
project. The VirAmp project is available via GitHub at
https://github.com/SzparaLab/viramp-project/. The spe-
cific commit SHA at the time of publication is
5e8aaef12192165718c66d4919ed21bb308a4600. Detailed
documentation for using VirAmp or for launching a new
AMI is found at: http://docs.viramp.com. Help notes
are also embedded within each VirAmp tool. Within
VirAmp, sample data is located under “Shared Data —
Data Libraries”, including sequence read data for the three
HSV-1 strains listed in Table 2. A smaller fourth
dataset containing a quarter million reads of HSV-1 is
also included for instant testing of the VirAmp pipe-
line. These data are also hosted at the GigaScience
Database [23].

A workflow has been published under “Shared Data —
Published Workflows”. Two sample histories have been
published under “Shared Data — Published Histories”,
both of which use the HSV-1 lab strain dataset. The first
of these, “workflow-pe-hist”, was run with the published
workflow while the other, “entire-pipeline-pe-hist”, was
run with the prepackaged pipeline (“Entire Pipeline —
Paired-end pipeline”). Due to the non-deterministic
nature of de novo assembly described above, the results
from each run of the pipeline may vary slightly, normally
within 10 bp.

Additional file

Additional file 1: (Word document) Table of contig coordinates for
step-wise assembly of an HSV-1 laboratory strain, in comparison to
the HSV-1 reference genome.
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