Siretskiy et al. GigaScience (2015) 4:26
DOI 10.1186/513742-015-0058-5

(GlgA)"
CIEN<E

RESEARCH Open Access

A guantitative assessment of the Hadoop
framework for analyzing massively parallel
DNA sequencing data

Alexey Siretskiy'", Tore Sundqvist!, Mikhail Voznesenskiy? and Ola Spjuth?

Abstract

Background: New high-throughput technologies, such as massively parallel sequencing, have transformed the life
sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch
systems that are based on high-performance computing resources; however, the bioinformatics software that is built
on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting
option to address the challenges of increasingly large datasets with distributed storage, distributed processing,
built-in data locality, fault tolerance, and an appealing programming methodology.

Results: In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single
node of conventional high-performance computing resources for the tasks of short read mapping and variant calling.
We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically
relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of
the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached
storage will not scale when computing resources increase in numbers. Measurements were performed using ten
datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair
comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files.
For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using
the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories.

Conclusions: From our experiments we can conclude that the improved Hadoop pipeline scales better than the
same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable
option for the common data sizes that are currently used in massively parallel sequencing. Given that datasets are
expected to increase over time, Hadoop is a framework that we envision will have an increasingly important role in
future biological data analysis.

Keywords: Next generation sequencing, Massively parallel sequencing, Hadoop, High-performance computing,
DNA-seq, Bioinformatics

Background

Since its inception, massively parallel DNA sequencing,
also referred to as Next Generation Sequencing (NGS),
has been an extremely bountiful source of data, providing
insights into the workings of biological machinery [1,2]. It
decreases the costs of sequencing as well as facilitates and

*Correspondence: alexey.siretskiy@it.uu.se

Department of Information Technology, Uppsala University, P.O. Box 337,
SE-75105 Uppsala, Sweden
Full list of author information is available at the end of the article

() BiolVled Central

promotes bigger studies with increasingly larger dataset
sizes. Extracting useful information from these volu-
minous amounts of data is transforming biology into
a data-intensive discipline requiring high-performance
computing (HPC) infrastructures. As an example of
the scale of the demands, a single Illumina high-
throughput sequencing run produces approximately
1800 gigabases (Gb), corresponding to 2 terabytes (TB) of
raw data, in 3 days [3].

© 2015 Siretskiy et al,; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.

mailto: alexey.siretskiy@it.uu.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Siretskiy et al. GigaScience (2015) 4:26

Mapping short reads to a reference sequence and then
finding the genetic variations specific to the sample is a
common task in NGS data analysis. Many of the most
widespread tools for this purpose (such as BWA [4],
Bowtie [5], and Samtools [6]) are not designed with dis-
tributed computing in mind. Many others do not even
have the native ability to use multiple cores.

Computers today consists of one or more processors,
in turn containing one or more compute cores. In HPC,
computers used for calculation are commonly referred to
as computer nodes or simply nodes. The most widespread
approach to accelerate NGS tools is to parallelize within
a node (multi-core parallelization) using shared memory
parallelism, such as with OpenMP [7], but this approach
is naturally limited by the number of cores per node,
which currently does not usually exceed 16 [8]. For the
tools that do not support OpenMP natively (e.g. Samtools)
variant calling can be parallelized by creating a separate
process for each chromosome, genetic interval, or using
the GNU Parallel Linux utility [9]. It is important to note
that a multi-core approach does not improve the per-
formance of operations that are limited by local disk or
network throughputs, whereas splitting the dataset and
using multi-node parallelization is not generally bound
by these constraints. Message Passing Interface (MPI) is
a common method to implement multi-node paralleliza-
tion [10]. However, writing efficient MPI programs for
hundreds of cores is a non-trivial task because thread syn-
chronization (or load balancing) has to be woven into the
software code and there are only a few existing solutions
available for processing sequencing data [11,12].

Another approach to introduce parallelization into NGS
analysis pipelines in Linux systems is to use custom script-
ing in a language such as Bash, Perl, or Python. This
involves using existing utilities and cluster tools to split
the data into chunks, process them on separate nodes, and
merge the results afterwards. This kind of scatter-gather
solution can also benefit from specialized implementation
strategies based on MPI-like and OpenMP parallelization
to provide good performance. However, this development
requires substantial expertise to be efficient. Furthermore,
given that the process is tightly coupled to the local com-
putational cluster and network architectures, it might
also be nearly impossible to exploit such optimizations in
different settings.

Other examples of strategies for parallelization of NGS
analysis includes the Galaxy platform [13], which pro-
vides a built-in parallelism functionality that automatically
splits the input dataset into many part files on the shared
file system, uses the cluster to process them in paral-
lel, and then collects the results. However, when it is
used as a data communication medium to preserve good
scalability, the shared file system puts essential demands
on the internode communication network infrastructure.

Page20f 13

Another factor limiting scalability is the system’s inabil-
ity to cope with transient system problems and failed
cluster nodes, either of which would simply result in a
failed job. The GATK'’s Queue pipeline tool [14] pro-
vides a more advanced solution that deals with this lat-
ter scalability problem but not the former because it
also uses a shared file system to move data between
nodes.

Unlike these strategies, which tend to wrap existing
tools in a parallelization scheme, a more radical option
is to adopt the Map-Reduce (MR) programming model,
which has been conceived with the objective of achiev-
ing scalability [15]. MR offers a compelling alternative
for running tasks in a massively parallel way and it is
successfully used by many well-known data-driven oper-
ations [16] to process huge datasets with sizes of up to
terabytes [17] and even petabytes [18]. The most preva-
lent open source implementation of MR is Hadoop [19].
The Hadoop MR framework has an appealing program-
ming methodology in which programmers mainly need
to implement two functions: map (mapper) and reduce
(reducer). The framework provides automatic distribu-
tion of computations over many nodes as well as auto-
matic failure recovery (by retrying failed tasks on different
nodes). It also offers automated collection of results [19].
The Hadoop Distributed File System (HDES) is a com-
plementary component that stores data by automatically
distributing it over the entire cluster, writing data blocks
onto the local disk of each node and, therefore, effec-
tively enables moving the computation to the data and
thus reduces network traffic. HDFS provides a storage
system where the bandwidth and size scales with the num-
ber of nodes in the cluster [20], which is very different
from the properties of the usual HPC cluster network
architecture.

There are currently several Hadoop-based solutions
that can be used to analyze the results for DNA-
seq [21,22], RNA-seq [23], and de-novo assembly [24]
experiments; see also [25] for an overview. Although pre-
vious reports, such as the Crossbow publication [22],
have mainly focused on the performance of Hadoop
tools on public clouds and, in particular, Amazon EC2,
a thorough comparison of similar analysis pipelines on
an HPC cluster and a private Hadoop cluster is not
available.

In this manuscript we focus on quantifying the common
belief that Hadoop excels at analyzing large NGS datasets
and we study the execution times for datasets of different
sizes. We also compare the Hadoop and HPC approaches
from a scaling perspective.

Data description
Previously published publicly available datasets are used,
see Methods section for more.

Siretskiy et al. GigaScience (2015) 4:26

Methods

Datasets

For our experiments we used a publicly available Dataset I
to check the concordance of the HPC and Hadoop
approaches and a synthetic Dataset (S) that was gener-
ated from the Arabidopsis thaliana TAIR10 [26] reference
genome with the wgsim tool from the Samtools package,
which mimicked Illumina HiSeq sequencing data. The
datasets are listed in Table 1.

Data preparation

We derived nine datasets of pair-ended reads by extract-
ing a progressively increasing part of Dataset S, uniformly
occupying the range from approximately 10 to 100 Gb,
which are referred to as Datasets S1-S9. All of the data
used were standardized to the FASTQ format and com-
pressed with pbzip2 [27] (which is a parallel version
of the bzip2) because it provides very good compres-
sion and is splittable. This means that the archive can
be natively expanded by Hadoop using the proper codecs
in a massively parallel manner, thereby allowing us to
simultaneously process multiple segments [19,20].

The indexed reference genome was copied to Hadoop’s
file system (HDFS) before starting the experiments.
Specifically, the storage volume containing the input data
was mounted with SSHFS to one of the Hadoop nodes,
from where the bzip2-compressed data was transferred
to HDFS.

Computational resources

We used a computational cluster at UPPMAX [28] to run
the HPC analysis pipeline. Data and reference genomes
were stored on a parallel, shared storage system. The
Hadoop test platform was deployed on a private cloud
using the OpenNebula [29] cloud manager and it was
configured with the Cloudera Hadoop distribution ver-
sion 2.0.0-mr1-cdh4.7.0 [30].

Each node in the HPC cluster is equipped with 16
cores and 24-96 GB RAM, while each node in the pri-
vate cloud has seven cores and 62 GB of RAM (referred to
as Hadoop I). The underlying hardware for the Hadoop I
cluster allows for 8.8 GB of RAM per core of the vir-
tual nodes enabled by the KVM hypervisor [31]. Having
this amount of RAM makes it feasible to enable hyper-
threading; that is, for each physical core on the physical
node, the host operating system addresses two logical

Table 1 Datasets used in the comparison

Dataset Organism Size in Gb
| A.thaliana 14
S A.thaliana, the artificial dataset 100.0

created using Samtools package

Page30f13

cores, which increases the number of CPU cores on the
physical node to 16. In this case, one virtual node has 14
cores with about 4 GB RAM per core, which allows us
to run the Hadoop services while keeping in memory a
reference genome as large as the Homo sapiens indexed
by Bowtie. We refer to the hyper-threaded version as the
Hadoop II cluster. A detailed specification of the hard-
ware configuration of the two computational resources is
available in the Additional file 1.

Analysis pipelines

To compare the Hadoop and HPC platforms, we chose
the task of identifying single-nucleotide polymorphisms
(SNPs) from short-read data. Although there are many
different approaches and software tools to perform this
task in an HPC environment [32], there are only a limited
number of options for Hadoop.

In an attempt to make a fair comparison between the
two very different platforms, the Crossbow package [22]
(version 1.2.0), which performs the tasks of preprocessing,
mapping, and variant calling from short reads, was cho-
sen. This package may be run in both Hadoop and HPC
environments, invoking the same mapper (Bowtie [5], ver-
sion 0.12.8) and SNP caller (SoapSNP [33], version 1.02).
We constructed two separate pipelines: the first runs on
HPC resources and the second runs on a Hadoop sys-
tem. We introduced the changes to Crossbow that are
described in Section Data preprocessing, which enables us
to preprocess the reads in a massively parallel way.

We designed an additional experiment to study the
advantages of the data locality strategy used by Hadoop
in comparison to the NAS or SAN solutions that are
widely used in HPC centers. On the NAS storage area with
enabled data striping, we used Dataset S to map it to the
reference genome TAIR10 with the following strategies:

1. The dataset from the NAS was copied in a parallel
way to a set of HPC computation nodes, so that the
local disk of each node received a chunk of the initial
dataset, which was continued with the local data
mapping with Bowtie, and ended with the mapped
reads in the SAM format being sent back to the NAS.

2. The same dataset from the NAS was copied to
HDFS, where the mapping to the same reference
genome with the same mapper was carried out and
the mapped data was left on the HDFS.

We measured the run time for each of the pipelines, dis-
tinguishing the communication time and mapping time.
For the HPC nodes, communication is a sum of the time
for copying the data to and from computation nodes,
while for Hadoop the sum of data ingesting and pre-
processing times was counted as the communication
expense. The exact workflow for HPC is available from
Github [34].

Siretskiy et al. GigaScience (2015) 4:26

Results

Data preprocessing

Crossbow includes a preprocessor that can download data
from Amazon S3, FTP, and HTTP servers over the inter-
net, which it then reshapes and delivers to the Hadoop
cluster [22]. To provide the URLs of the data, Crossbow
uses a manifest file where each line describes a location of
one dataset. The preprocessor launches one mapper per
line to split and reformat the data. Therefore, the only
way to parallelize the preprocessing stage is to manually
split the dataset into subsets and list their locations in the
manifest file.

We have developed a massively parallel Python imple-
mentation of the preprocessor [35], making use of the
Hadoop Streaming library. The preprocessor can process
either different versions of FASTQ-formatted data from
the Illumina platform or data extracted from the SRA
format [36]. Our solution imposes the requirement that
the input data is stored where the Hadoop nodes can
access it (for example, on HDFS) and is compressed in a
splittable archive (such as bz2). To improve memory effi-
ciency in a Hadoop setting, we introduced a standard for
the FASTQ read IDs by generating new IDs based on the
SHA-1 hash function, we then labeled the read mates with
“1” and “2” suffixes. The benefit of this is that by know-
ing the exact size of the read IDs for the whole dataset,

Page4of 13

we can avoid unnecessary memory spills in the Hadoop
implementation during the sorting stage.

Re-archiving the data

It is common for sequencing platforms to deliver data
in the gz format. However, despite its convenience, it
cannot be unpacked in parallel, which is contrast to the
bz2 format that is utilized by our short read prepro-
cessor. We measured the time for (gzip-bzip2) con-
version versus (gzip-split-gzip) for different dataset
sizes using the highly efficient GNU parallel tool and the
pigz tool [37] on a multi-core node. For the datasets,
we observed that timings for the bzip2 compression
are smaller, while the data is stored more efficiently
(see Table 2).

Efficiency of the preprocessing stage

To improve the native Crossbow preprocessor scalability,
all of the Datasets S1-S9 were split beforehand and stored
on conventional HPC storage. The number of gzip splits
varied from 23 for S1 to 201 for S9, providing a good load
balancing for the 16 CPU core node. To show the scal-
ability properties of our MR preprocessor, we measured
its execution time for Datasets S1-S9 located on HDFS.
The timings, which are included in Table 2, indicate that
the scaling relations are close to linear in both cases, see
Figures 1, 2. In the case of NGS data delivery in bz2

Table 2 Timings in seconds for the different pipeline stages when running Crossbow on HPC node (16 CPU cores) and
Hadoop I cluster (eight nodes, 56 CPU cores) and Hadoop Il cluster (eight nodes, 112 CPU cores) for Datasets S1-S9

Stages Platform Datasets
S1 S2 S3 S4 S5 S6 S7 S8 S9
ingest to HDFS Hadoop |lI 106 236 472 606 862 974 1018 1244 1384
) gz split (HPC) 466 782 1094 1406 1728 2052 2390 2774 3090
conversion
gz to bz2 conver- 211 423 633 842 1056 1264 1473 1685 1911
sion (Hadoop 1,1l)
HPC 406 630 1002 1235 1469 1810 2043 2283 2660
preprocess Hadoop | 560 891 1172 1672 1937 2271 2665 3011 3396
Hadoop I 537 685 892 1179 1414 1641 2091 2334 2613
HPC 1434 2857 4281 5775 7216 8627 10088 11432 13028
Hadoop | 707 1385 2060 3331 3398 4163 4761 5630 6276
mep Hadoop Il 511 981 1459 2636 3023 3194 3361 4553 4766
Hadoop II* 486 955 1422 1882 2336 2812 3310 3771 4305
HPC 1045 1698 2621 3553 10989 18993 16890 20785 21948
SNP call Hadoop | 666 994 1127 1423 1906 2287 2765 2982 3444
Hadoop I 661 965 1344 1364 1830 2450 2765 3029 3471
HPC 3351 5967 8998 11968 21402 31554 31411 37274 40726
total time Hadoop | 2250 3929 5464 7848 9159 10959 12682 14558 16436
Hadoop I 2026 3289 4601 6607 7719 8903 10393 12845 14145

The ‘Hadoop I1*" data were obtained as follows: the average time for each mapping job was multiplied by the number of successful Hadoop mapping jobs, omitting

the failed jobs. The errors are not shown.

Siretskiy et al. GigaScience (2015) 4:26

Page 50f 13

Scaling relations for Datasets S1-S9, HPC node
I I I
preprocess
map D
20,000 [D SNP call D o
L]
L]
15,000 [:
&
Y
£ 10,000 [i
5,000 [0 7
L]
ol |
| | | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Dataset size, (Gb)
Figure 1 Scaling relations for different stages of the pipeline executed on the HPC node. Good data partitioning in the manifest file yields a linear
scaling for the preprocessing stage. However, the SNP calling stage does not scale linearly, which is the main reason of the sub-optimal load
balancing implemented in Crossbow.

format, our approach is more advantageous because the
data is ready for massively parallel processing. One of the
benefits of the native preprocessor that should be raised
is its great flexibility in downloading data from different
sources.

Mapping and variant calling

We executed the two pipelines for each of the nine
datasets on the HPC node and Hadoop platforms, and
measured the wall-clock run time for each pipeline stage.
All of the experiments were repeated at least three times
and the results were averaged to obtain a data point for
the particular combination of data size and computational
platform.

Concordance of Hadoop and HPC results

To check the agreement between the Hadoop and HPC
pipelines, the produced SNP lists were compared for each
of the platforms for Dataset I [38]. Of the total 39,129,856
reads that were processed with Bowtie, 23,014,231 reads
with at least one reported alignment (i.e. 59% of mapped
reads, which is not an unusual case for A.thaliana) were
parsed by SOAPsnp to detect SNPs. From the total
100,162 SNPs detected by SOAPsnp, there were 212
records with minor differences, such as ‘Count of uniquely
mapped second best base, ‘Count of uniquely mapped best
base’ etc. (see the SOAPsnp manual). The overlap between
the SNP lists, taking into account the average sequenc-
ing depth of 10, indicates the practical equivalence of the

pipelines. The short read length for the test Dataset I (only
30bp), and the low average coverage and non-uniform
distribution of the mapped reads along the genome, are
responsible for producing the observed minor difference
in the SNPs. If the average coverage increases, then the
difference between the pipelines would disappear.

Scalability
Given the wide range of dataset sizes processed in prac-
tice (e.g. exomes and whole-genome sequencing at various
depths) it is important to understand the scaling char-
acteristics of the Hadoop and HPC processing platforms
with respect to input size. We measured the time required
to execute each platform’s respective analysis pipeline for
each of the test Datasets S1-S9. The results are shown in
Table 2 and Figures 1, 2, including the scaling relations
for the pipeline stages. We observe that the preprocessing
and mapping stages with Crossbow scale linearly with the
dataset size. However, the SNP calling stage displays worse
scalability for dataset sizes greater than 50 Gb. The devia-
tion is due to Crossbow task scheduling, which results in
a sub-optimal load balancing of the CPU cores. One could
speculate that one of the reasons for this is an imperfect
pileup strategy of the genomic regions with a highly diver-
gent coverage by the mapped reads. The measurements
for the Hadoop platform show perfect scaling for our MR
preprocessor with respect to dataset size.

To estimate deviations from the linear scaling for the
mapping stage, we calculated the average Hadoop job

Siretskiy et al. GigaScience (2015) 4:26

Page 6 of 13

Scaling relations for Datasets S1-S9, Hadoop I and II
| | | I I I I I I
Opreprocess, Hadoop 1
3.000 | @ preprocess, Hadoop 11 |
A) .-
.bED 2,000 |- .
g
&
1,000 o
| | | | | | | | | |
T T T | | | | | | |
A map, Hadoop I A
6,000 - A map, Hadoop II A h
—5-ideal map, Hadoop II
= 4000 y
B0
g
k|
H
2,000 - .
0 F— i i | | | | | | —
[ISNP call, Hadoop I [m]
m SNP call, Hadoop II
3,000 - ™ .
0) a
@ O .
g 2,000
2T O . |
H
[l n
1,000 + m Ll .
[m]
| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Dataset size (Gb)
Figure 2 Scaling relations for Hadoop | and Il with increasing input dataset size, from S1 to S9. The figure highlights the almost linear scaling
characteristics of the Hadoop approach. Our MR implementation of the preprocessing stage (A) displays almost perfect linear scaling. The ‘ideal
map’ curve for Hadoop Il cluster (open circles) shows (B) the deviations from the real case (closed triangles) due to map jobs failures; that is,
additional time to reallocate and restart jobs. The SNP calling stage (C) scales worst, compared with the others, mainly because of the poor job
balancing of the Crossbow.

time multiplied by the number of successful Hadoop jobs
for each Dataset S1-S9. The data is plotted as an ‘ideal
map’ curve for each of Datasets S1-S9 in Figure 2 for
the Hadoop II cluster, and are marked as ‘Hadoop II* in
the Table 2. After a thorough analysis of the log files, we
conclude that one of the reasons for the deviation is the
failure of the Hadoop jobs, which results in job migra-
tion and restart. To enforce the statement, the statistics
for the Hadoop II jobs processing the Dataset (S) were
collected so as to plot the timing distributions for differ-
ent stages of the Hadoop pipeline (Figure 3). The double
maxima on Figure 3(A-E) are due to the round-robin

pattern by which the jobs are distributed between the
nodes: on the first round the full-size jobs are pushed,
whereas the remaining dataset chunks of reduced size
are processed faster, building up the left maximum. The
distribution for the SNP-calling stage (Figure 3(F)) is dif-
ferent: most of the jobs have a duration in the order of
seconds, while there are other jobs that run for almost
one hour. These outliers contribute to the sub-linear scal-
ing of the SNP-calling stage. We also note that enabling
hyper-threading (Hadoop II) improves the performance.
Despite the observed deviations from the ideal scaling,
the Hadoop framework can help to engage a multitude

Siretskiy et al. GigaScience (2015) 4:26

Page 7 of 13

0.2H0O preprocess read mates stage 0.15 ‘D merge read-pairs, mappers
A) B)
0.15
g o1
g
=
2 01
=
i
A 0.05
0.05
0 o ol J:anjlhﬂh 0 o
100 150 200 250 300 350 100 150 200 250
0.08 |Dmerge read-pairs, reducers 0.2
&) D)
0.06 0.15
=}
2
2 0.04 0.1
z
A
0.02 0.05
0 0 =
900 950 1,000 1,050 1,100 800 1,000 1,200 1,400 1,600 1,800
OsNp- -calling stage, mappers ‘D SNP-calling stage, reducers
F)
0.1 0.2
g
=
2
=
.2 0.05 0.1
a
0 0
0 50 100 150 200 0 500 1,000 1,500 2,000 2,500 3,000
Timing (s) Timing (s)
Figure 3 Timing histograms for different stages of the Hadoop-based Crossbow pipeline: preprocessing (A)-(C), mapping (D) and SNP
calling (E)-(F) for Hadoop Il cluster, Dataset S9, several independent runs. The double maxima on some plots are due to round-robin-like fashion
Hadoop distributes jobs among the worker nodes: the first full-size jobs are scheduled, while the remaining data chunks form smaller peaks of
shorter duration. The stage tends to have better scaling when the double peaks, if any, are closer. From this perspective, the reason of sub-linear
scaling of the Crossbow SNP-calling stage becomes clear: the majority of jobs of the reducing phase (F) are very short, in the order of tens of
seconds, while there are several much longer jobs.

of nodes, even if the underlying program does not scale
beyond a single node [22,39].

Efficiency of the calculations

Given that Hadoop was designed to digest huge
datasets [17,40], we hypothesize in terms of the total CPU
time that the Hadoop platform becomes more efficient
when compared with the HPC platform when the biologi-
cal sequence dataset is larger. For comparison, we use the

function F = T}, x p, where T, is the calculation time on p
cores. To observe the relative scalability of the approaches,
we introduce the Fppu400p/Frpc metric and investigate
its behavior for different dataset sizes. Importantly, the
choice of metric makes it possible to compare the effi-
ciencies of two very different platforms as a function of
the dataset size, as shown in Figure 4, which displays the
ratio Frizdoop/Frpc for Hadoops I and II as a function of
the reciprocal dataset size using the data from Table 2.

Siretskiy et al. GigaScience (2015) 4:26

Page 8 of 13

Ratios of the short reads alignment time to the communication time
T T T T T
4 P B N — B
o T
351 1
g
$oaf :
N
S25) :
S
2
R i
[
1.5 1
® Hadoop
[CJHPC random
s OHPC SLURM | |
2“ 6 2“ 3 2“ 4 2“ 3 2“ 2
reciprocal number of nodes, 1/N, log 2-scale
Figure 4 The ratio of the Fiad00p/Frpc as a function of the reciprocal dataset size in Gb. The pipelines were run on the Hadoop | and Il clusters, as
well as a 16 core HPC node. The analytical curve f(x) = (a1x + by)/(axx + by) was used to fit the data for the stretches of linear scaling of
calculation time on the HPC platform. The outliers are marked with crossed symbols.

Extrapolation to zero on the X-axis estimates the ratio
for the hypothetical infinite dataset. For those stretches
where both Hadoop and HPC display linear scaling, the
analytical function f (x) = (a1x + b1)/(azx + by) was used
to fit the points. The extrapolation for our settings gives
the ratio as Fago0p/Frpc A 1.4 for Hadoop I and ~ 1.0
for Hadoop II. These asymptotes highlight that Hadoop
can decrease the total run-time and, therefore, improve
throughput by increasing the number of engaged cores,
which is an option that is often not available for the HPC
environment.

We note that the Hadoop platform becomes increas-
ingly efficient compared to the HPC platform as the
dataset size increases. The main reason for this is
the sub-linear scaling of the Crossbow SNP calling
phase on the HPC platform (Figure 1). This means
that Hadoop, even when running in the virtualized
environment of a private cloud assembled on moder-
ate hardware, is competitive with the HPC approach
run on ‘bare metal’ of relatively modern hardware
without internode communication losses for datasets
larger than 100GB (Dataset S), which is typical for
human genome sequencing with a sequencing depth of
about 30X.

Advantages of the data locality strategy

The network communication model for Hadoop has a
major difference from the usual HPC cluster network
architecture (n-tier tree) with NAS or NFS attached stor-
ages in that the effective bandwidth of the Hadoop net-
work increases with the cluster size [20], which is in
contrast to that of the HPC network where cluster growth

results in network saturation and performance degra-
dation. To study this phenomenon, we compared HPC
and Hadoop network communication costs as a func-
tion of the number of nodes involved in a computation
for DatasetS (100 Gb). Because the mapping process is
embarrassingly parallel (i.e. the read-pairs are indepen-
dent of each other and thus can be aligned independently)
it is possible to distribute the work over many nodes (e.g.
by splitting the initial data into chunks to process them in
parallel). In this approach, reducing the size of each data
chunk reduces the size of the mapper job, T zjignment, but at
the same time more chunks have to be simultaneously sent
over the network, which increases the communication
time, T comm-

There are several software packages for short-read map-
ping with MPI support [11,12]. Almost linear scaling
up to 32 nodes for pair-ended reads has been reported
with the Pmap package, which we observed to per-
form poorly for datasets larger than 20 Gb. Instead, we
implemented a highly optimized Bash script to transfer
FASTQ data from the NAS storage to the local nodes’
scratch disks, which were then aligned, and the SAM
files were sent back to the NAS storage. This script is
based on standard Unix utilities that make very effi-
cient use of the HPC cluster network (the source code
is available on Github [34]). We then compared the
network performance with the standard Hadoop HDFS
approach.

We separated and calculated the arithmetic averages of
the mapping time, Tujigumens» and communication time,
Teomm, and plotted the ratio Tusgument/ Tcomm as a func-
tion of the reciprocal number of nodes 1/N involved in

Siretskiy et al. GigaScience (2015) 4:26

computations (Figure 5). Although this measure is appli-
cable to both HPC and Hadoop, T¢omm has a different
interpretation for each of these platforms. For Hadoop,
Teomm is the time needed to deliver the data to HDFS
and preprocess the short reads in FASTQ format to pre-
pare them for the core MR pipeline phases. In this sce-
nario, a good data locality is automatically ensured by the
distributed data storage strategy used by HDFS. For the
HPC approach, T¢omm is the time needed for the chunks to
be sent from the data storage location to the node’s scratch
disks (where the actual mapping happens) and to transfer
the aligned SAM files back to the storage location over the
network.

Hadoop I results (filled circles in Figure 5): The ratio
Tatignment/ Tcomm indicates weak dependency in a wide
range of number of nodes N: from 4 up to 40. It is known
that Bowtie provides almost linear [5] scaling between
mapping time and dataset chunk size D: Tyjignmens ¢ D
1/N. Because the ratio Tugnment/ Teomm is approximately
constant, one can conclude that Ty, o 1/N; that is,
the data is processed more quickly when more nodes are
involved.

HPC results (open shapes in Figure 5): The data from
the delivery location is split into chunks in parallel,
which are simultaneously pushed to the local scratch

Page 9 0of 13

disks of the HPC nodes allocated by SLURM [41]. One
can see two distinct linear stretches: one stretch is for
the range from 4 to about 12 nodes, and the other
is from 12 up to 60. The former (horizontal stretch)
is explained as for Hadoop: the chunks are distributed
more quickly when more nodes are involved. The lat-
ter stretch with the positive slope could be explained as
follows. In the region of about 12 nodes, the network
becomes saturated and is unable to pass more data in a
time unit, while the mapping time is still proportional
to the chunk size: Teomm ~ const, Tujgnmens X D o
1/N = Tuignment/ Tcomm o 1/Nj; that is, there is a lin-
ear dependency in the selected coordinates, which can
be observed in the plot. The transition area between the
two modes is based on the fact that each hard disk drive
on the local node can write data at a speed of about 1
Gbit/sec. Ten nodes will consume the data with a rate
of 10 Gbit/sec, which is the limiting speed for the standard
10 Gbit Ethernet cable that is used to connect the cluster’s
rack with the switch. The nodes are allocated on the same
rack, which is the default SLURM behavior.

Scalability can be improved by overriding the default
behavior of SLURM and allocating the nodes randomly
from all available racks (‘HPC random’, open squares in
Figure 5). Allocating the nodes on random racks allows
more nodes to be engaged without saturating the net-
work. For our cluster, we could go up to 30-35 nodes with

Ratios of the short reads alignment time to the communication time

3.5

Ratio Taiignment /Teomm
2o
ot

2
[] @ L 4 L4 e
1.5 Qo °
O// ’ o Hadoop
.7 [JHPC random
1 OHPC SLURM
2—6 2—5 2—4 2—3 2—2

reciprocal number of nodes, (1/N), log2-scale

Figure 5 Ratios of the short reads alignment time to the communication time. All of the runs use Dataset S as an input. Two HPC scenarios are
shown as '"HPC SLURM' and ‘HPC random’, which correspond to standard SLURM behavior and a modified behavior that allocates nodes from
random racks. Linear fit was done with the least-squares method. One can see two defined linear regions for the HPC approach with very different
tangents, which are caused by the network saturation. For the HPC platform, as the number of nodes increases a greater amount of time is spent on
communication than on mapping. The Hadoop approach reveals better scaling properties.

Siretskiy et al. GigaScience (2015) 4:26

Page 10 0of 13

Table 3 Timings for mapping and the ratio Tujignment / Tcomm for HPC and Hadoop | clusters for Dataset S as a function of

the number of nodes involved

Hadoop | HPC random

Number of Mapping Taiignment Tatgumens Number of nodes Mapping Taiignment Tegment

nodes (cores) time, minutes (cores) time, minutes

4(28) 2935 171 4(64) 744 3.89

6(42) 189.8 1.62 10(160) 324 376

8(56) 136.0 1.62 14(224) 22.7 3.77

16(112) 70.3 1.48 18(288) 179 3.78

32(224) 39.3 1.66 22(352) 14.5 3.79

40(280) 325 1.65 26(416) 123 3.77
30(480) 10.7 3.73
34(544) 95 345
38(608) 85 3.16
42(672) 76 296
46(736) 7.0 2.55
50(800) 6.4 2.65
54(864) 59 2.34
58(928) 55 212

For the ‘HPC random’ approach, data chunks first have to be copied to the local node disks, and the alignments (SAM files) are copied back, while Hadoop keeps all of
the data inside HDFS and, hence, does not need data staging. However, Hadoop needs to ingest the data to HDFS and preprocess the reads before the actual
mapping stage so as to be able to operate in an MR manner, resulting in what we term ‘communication costs’. Note that each HPC node has 16 cores, while each
Hadoop node has seven cores (the eighth core is dedicated to run the virtual machine).

perfect linear scaling. For the case where most resources
are used (58 nodes), the deviation from a linear speedup
is & 7%; that is, 5.50 minutes against the ideal 5.14
(Table 3). The threshold number of nodes in this strat-
egy (& 35) is caused because of saturation of the uplink
cable at a throughput of 50 Gbit/s. The proposed HPC
strategies that aim to get the maximum performance from
the storage resources show that, even while being prop-
erly adjusted and tuned, the HPC approaches suffer from
network saturation at a higher number of nodes. HDFS, on
the other hand maintains data locality, reducing commu-
nication and data transfer and, hence, leads to better scal-
ability. Although our investigation on scaling was based
on our existing limited capacity, we expect the behav-
ior to not significantly deviate from the scaling shown in
Figure 5 [17,19].

Usability

Hadoop presents a computing paradigm that is different
from that which most users are accustomed to, and it
requires an investment to learn how to use it efficiently.
The Galaxy [13,42] platform is a good example of how
to deliver bioinformatics pipelines on HPC and cloud
resources. Galaxy provides a web-based graphical user
interface (GUI) to bioinformatic programs, which sim-
plifies the experience for the end user. CloudGene [43]
is a similar project that uses a GUI to help lower the

learning curve for Hadoop adopters. In addition, Cloud-
Gene is specifically targeted at users in the life sciences.
It uses a light-weight and flexible web-based solution for
both public and private clouds. In our study we inte-
grated our Hadoop-pipeline in CloudGene and extended
the platform with functions to import data from the cen-
tral file system at UPPMAX into HDEFS on the private
cloud (see Figure 6). For our particular task, which is
related to DNA sequencing, CloudGene makes it easy
to select the data and parameters for pipeline execution.
Most of the data management work is done automatically
and the results can be downloaded to the client machine.
The modular structure allows us to modify the source
code to adapt it to the existing computing center archi-
tecture. For example, UPPMAX users can import their
data from the sequencing platform directly to the Hadoop
cluster by pressing a button and entering the credentials,
while at the same time they can be sure that their sen-
sitive data is kept private. It should be mentioned that
although Crossbow has its own native user interface for
running on Amazon EC2 [44], it does not support private
clouds.

Discussion

In this report we have described two approaches to the
high-performance analysis of DNA sequencing data: one
is based on regular HPC using a batch system and the

Siretskiy et al. GigaScience (2015) 4:26

Page 11 0f 13

(A)

Submit Job X

Submit Job
Select an Application.

Chose the application you want to execute:

4 {5 Applications
4] Genetics
[=] CloudBurst
=] Crossbow, pair-ended reads
=] Crossbow, single-ended reads

Crossbow, pair-ended reads

A scalable software pipeline for whole genome resequencing analysis. It combines Bowtie, an ultrafast
and memory efficient short read aligner, and ScapSNP, and an accurate genotyper. These tools are
‘combined in an automatic, parallel pipeline.

by Ben Langmead et al. | Version 1.1.2 | Website

Next > Cancel

(B)

Submit Job X

Submit Job
Set all parameters.

General

Job-Name: crossbow/crossbowPairedEnds-20141223-12

Input Parameters

Forward reads: Browse...
Reverse reads: Browse... |
Reference in JAR Browse...
format:

Reporting mode -X 600 ~chunkmbs 200

agruments for Bowtie:

Quality encoding: phred33 encoding %

A symbol
distinguishing forward
and reverse reads in a
FASTQ file:

Tlumina < 1.8, symbol '/* v

Number of Reducers 224

frr QNID rallinA ctana:

<Back Cancel

Figure 6 An example of a job setup view with the graphical Hadoop front-end Cloudgene, providing a smooth user experience, even for novice
users. A) Pipeline selection, which in our case contains the Crossbow pipeline. B) Parameter setting for the job.

other is based on Hadoop. To compare the two plat-
forms, we developed highly optimized pipelines for both
scenarios. We were able to show that for datasets of bio-
logically reasonable size (i.e. 30X sequencing depth for
human genome) Hadoop is comparable to HPC in terms
of CPU-hours and is becoming an attractive option for
bioinformatics data analysis from an e-infrastructure per-
spective. This conclusion is also supported by previously
reported studies that have applied Hadoop to the analy-
sis of RNA-seq [23] and de-novo sequence assembly [24]
experiments. The main benefit of Hadoop is its almost lin-
ear scaling with the problem size. We were able to show
that this also holds for analysis of NGS data. Our results
further reveal that calculations on Hadoop with HDFS
scale better than the network-attached parallel storage
commonly used in HPC centers. For the already estab-
lished HPC environment, MapReduce tasks can be sub-
mitted to multiple nodes within a cluster using MPI and
the hybrid model. Projects such as MARIANE [45] report
recent advances in this direction.

The amount of RAM installed on the nodes has a
significant impact on Hadoop’s performance. Additional
RAM benefits performance in at least two ways: firstly,
it reduces the spilling from RAM to hard disk during
the data aggregation phase between the Map and Reduce;
and secondly, it allows (in our case) a speedup of 20% by
enabling hyper-threading while preserving enough RAM
for each logical core. Our results show that 4 GB of RAM
per core is enough for Hadoop to efficiently analyze
the results of H.sapiens sequencing experiments. On the
other hand, if the hardware resources are modest, leaving

insufficient memory for each core to keep the indexed
genome in memory (i.e. for programs that do not imple-
ment more efficient shared memory strategies), it is more
pragmatic to increase the amount of RAM available per
core by leaving some cores idle.

Hadoop has so far seen relatively low adoption in bioin-
formatics. The primary reason for this is that the selection
of bioinformatics software for Hadoop is still somewhat
limited because most analysis tools are implemented
as regular Linux applications rather than being writ-
ten specifically for Hadoop. Although it is possible in
some cases to wrap existing applications within adapter
software (i.e. through purpose-built software, like Cross-
bow [22] adapts Bowtie [5], or through a generic adaptor
like Hadoop Streaming library) regular Linux applications
cannot generally be used directly on it. Two interest-
ing frameworks to simplify scripting in Hadoop are
BioPig [46] and SeqPig [47], which are both built on top
of the Apache Pig framework and are capable of automat-
ically distributing data and parallelizing tasks.

At the moment, however, Hadoop is incompatible with
conventional HPC resources and requires specialized sys-
tem administration; hence, adopting it into an existing
HPC facility can be challenging. Furthermore, HDES is
not fully POSIX-compliant, which means it cannot be
mounted as a regular Linux file system on computing
nodes. In addition, the temporary resource allocation
strategy used with HPC batch queues is a poor match for
the local storage strategy used by HDEFS. The fact that
typical HPC nodes are usually equipped with relatively
small amounts of local storage is a further sub-optimal

Siretskiy et al. GigaScience (2015) 4:26

design for HDFS storage nodes. There are currently efforts
that try to circumvent these incompatibilities. For exam-
ple, a recent study has provided Hadoop-on-Demand on
HPC resources [48]. An alternative approach is to forego
the HDFS and only use the Hadoop MapReduce com-
ponent. Spark [49] is another emerging platform for dis-
tributed computing and it has recently been introduced in
the bioinformatic domain [50]. It performs well for iter-
ative tasks on computers with large amounts of RAM.
ADAM [51] is a recent interesting NGS analysis frame-
work and processing pipeline that is built on top of Spark.
We intend to investigate ADAM’s performance in our
future research.

In summary, the results of this work show that Hadoop,
despite its limitations, enables highly scalable massively
parallel analysis of DNA sequence data and can be justi-
fied from an economic e-infrastructure perspective for the
data sizes that are common today. Given that the size of
the datasets and the number of samples used in molecular
bioscience are expected to increase over time, we envision
that Hadoop will become increasingly popular in several
types of bioinformatics applications.

Availability and requirements
® Project name: Analysis pipelines to compare the
Hadoop and HPC platforms,

e Project home page: https://github.com/raalesir/
HPC_bash_align https://github.com/raalesir/mr_
python
Operating systems: Unix
Programming language: Python and Bash
Other requirements: Unix
License: GPLv3
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplemental information. Description of
computational facilities. 1. HPC: Multinode short-read mapping was
performed on the Milou cluster (http://www.uppmax.uu.se/the-milou-
cluster), equipped with dual eight-core Intel Xeon E5-2660 processors, (2.2
GHz, 2 MB L2 cache, 20 MB L3 cache), 128 GB of RAM, an Infiniband
node-to-node network connection, and a 10Gbit/s uplink. 2. Storage: Gulo
(http://www.uppmax.uu.se/gulo) is a custom built Lustre 2.4 system using
eight HP nodes with MDS600 storage boxes and an additional node for
metadata handling. In total, it provides roughly 1 PB of storage and is
accessed with Lustre’s own protocol. It supports data striping over multiple
nodes and disk targets, and can give a theoretical single file read
performance of up to 80 Gbits per second. 3. The Hadoop | cluster was
deployed using OpenNebula. Each physical node was equipped with two
quad-core Intel Xeon 5520 processors (clock frequency of 2.26 GHz; 1 MB
L2 cache, 8 MB L3 cache), 72 GB of RAM, one 2 TB SATA disk, and Gigabit
Ethernet. The hyper-threading function was used to address 112 logical
cores instead of 56 physical for the Hadoop Il cluster.

Abbreviations
HPC: High-performance computing; NGS: Next-generation sequencing; Gb:
Gigabases: GB: Gigabytes; TB: Terabytes; MPI: Message-passing interface: MR:

Page 12 0of 13

MapReduce; HDFS: Hadoop distributed file system; RAM: Random-access
memory; CPU: Central processing unit; SNP: Single nucleotide polymorphism;
NAS: Network-attached storage; SAN: Storage area network; SRA: Short read
archive; NFS: Network file system; SLURM: Simple linux utility for resource
management: GUI: Graphical user interface.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AS conceived the project, automated Hadoop installation, devised and carried
out the analysis routines, and developed the code. TS was responsible for the
hardware and cloud infrastructure, while MV contributed with analytical
insights. AS, OS wrote the manuscript. All of the authors approved the final
manuscript.

Acknowledgements

We thank system experts Pontus Freyhult, and Peter Ankerstal at UPPMAX for
valuable discussions on effective storage and network usage. We also thank
Jonas Hagberg (BILS, Stockholm, Sweden) for implementing the Cloudgene
extensions to import data from UPPMAX filesystem. We also acknowledge
Luca Pireddu (CRS4, Italy) for his contribution with Hadoop expertise.

This work was supported by SNIC through Uppsala Multidisciplinary Center for
Advanced Computational Science (SNIC-UPPMAX) [p2013023]; the Swedish
strategic research programme eSSENCE, COST Action BM1006 Next
Generation Sequencing Data Analysis Network SegAhead, and St. Petersburg
State University (grant 12.50.1559.2013).

Author details

' Department of Information Technology, Uppsala University, P.O. Box 337,
SE-75105 Uppsala, Sweden. 2Department of Physical Chemistry, institute of
Chemistry, St-Petersburg State University, Saint-Petersburg, Russia.
3Department of Pharmaceutical Biosciences and Science for Life Laboratory,
Uppsala University, P.O. Box 541, SE-75124 Uppsala, Sweden.

Received: 4 September 2014 Accepted: 9 April 2015
Published online: 04 June 2015

References

1. Metzker ML. Sequencing technologies — the next generation. Nat Rev
Genet. 2010;11(1):31-46.

2. Marx V. Biology: The big challenges of big data. Nature. 2013;498(7453):
255-60.

3. Hiseq Comparison. Available from: http://www.illumina.com/systems/
sequencing.ilmn.

4. LiH, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-60.

5. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol. 2009;10(3):R25.

6. LiH, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics.
2009;25(16):2078-79.

7. The OpenMP® API specification for parallel programming. Available from:
http://openmp.org/.

8. Top 500 Supercomputer Sites. Available from: http://www.top500.0rg/
statistics/list/.

9. Tange O.GNU Parallel - The Command-Line Power Tool. The USENIX
Magazine. 2011;36(1):42-7. Available from: http://www.gnu.org/s/parallel.

10. The Message Passing Interface (MPI) standard. Available from: http://
www.mcs.anl.gov/research/projects/mpi/.

11. The Extended Randomized Numerical alignEr. Available from: http://erne.
sourceforge.net.

12. pMap: Parallel Sequence Mapping Tool. Available from: http://bmi.osu.
edu/hpc/software/pmap/pmap.html.

13. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al.
Galaxy: a platform for interactive large-scale genome analysis. Genome
Res. 2005;15(10):1451-5.

14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
et al. The genome analysis toolkit: a MapReduce framework for analyzing

https://github.com/raalesir/HPC_bash_align
https://github.com/raalesir/HPC_bash_align
https://github.com/raalesir/mr_python
https://github.com/raalesir/mr_python
http://www.biomedcentral.com/content/supplementary/s13742-015-0058-5-S1.pdf
http://www.uppmax.uu.se/the-milou-cluster
http://www.uppmax.uu.se/the-milou-cluster
http://www.uppmax.uu.se/gulo
http://www.illumina.com/systems/sequencing.ilmn
http://www.illumina.com/systems/sequencing.ilmn
http://openmp.org/
http://www.top500.org/statistics/list/
http://www.top500.org/statistics/list/
http://www.gnu.org/s/parallel
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://erne.sourceforge.net
http://erne.sourceforge.net
http://bmi.osu.edu/hpc/software/pmap/pmap.html
http://bmi.osu.edu/hpc/software/pmap/pmap.html

Siretskiy et al. GigaScience (2015) 4:26

20.

21.

22.

23.

24.

25.

26.
27.
28.
29.
30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

next-generation DNA sequencing data. Genome Res. 2010;20(9):
1297-303.

Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. In: OSDI '04: 6th Symposium on Operating Systems Design and
Implementation. 2004. https://www.usenix.org/legacy/event/osdi04/
tech/full_papers/dean/dean.pdf.

Hadoop Wiki - Powered By. Available from: https://wiki.apache.org/
hadoop/PoweredBy.

Lin J, Dyer C. Data-Intensive Text Processing with MapReduce. Morgan
and Claypool Publishers: College Park; 2010.

How Facebook keeps 100 petabytes of Hadoop data online. Available
from: https://gigaom.com/2012/06/13/how-facebook-keeps-100-
petabytes-of-hadoop-data-online/.

White T. Hadoop: The Definitive Guide. 1st ed. Sebastopol: O'Reilly; 2009.
Available from: http://oreilly.com/catalog/9780596521981.

Sammer E. Hadoop Operations. 1st ed. Sebastopol. O'Reilly Media: Inc,;
2012.

Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics. 2009;25(11):1363-9.

Langmead B, Schatz MC, LinJ, Pop M, Salzberg SL. Searching for SNPs
with cloud computing. Genome Biol. 2009;10(11):R134.

Langmead B, Hansen KD, Leek JT, et al. Cloud-scale RNA-sequencing
differential expression analysis with Myrna. Genome Biol. 2010;11(8):R83.
Schatz M, Sommer D, Kelley D, Pop M. Contrail: Assembly of large
genomes using cloud computing. In: CSHL Biology of Genomes
Conference; 2010.

Taylor R. An overview of the Hadoop/MapReduce/HBase framework and
its current applications in bioinformatics. BMC Bioinformatics.
2010;11(Suppl 12):S1. Available from: http://www.biomedcentral.com/
1471-2105/11/512/S1.

The Arabidopsis Information Resource (TAIR). Available from: www.
arabidopsis.org.

Gilchrist J, Nikolov Y. Parallel BZIP2 (pbzip2). http://compression.ca/
pbzip2/.

UPPMAX. Available from: http://uppmax.uu.se.

Open Nebula. Available from: http://opennebula.org.

Cloudera. http://www.cloudera.com/content/cloudera/en/why-
cloudera/hadoop-and-big-data.html.

Habib I. Virtualization with KVM. Linux J. 2008 Feb;2008(166). Available
from: http://dl.acm.org/citation.cfm?id=1344209.1344217.

LiY, ChenW, Liu EY, Zhou YH. Single Nucleotide Polymorphism (SNP)
Detection and Genotype Calling from Massively Parallel Sequencing
(MPS) Data. Stat Biosci. 2013;5(1):3-25.

Short Oligonucleotide Analysis Package. Available from: http://soap.
genomics.org.cn/soapsnp.html.

Siretskiy A. HPC_bash_align. Available from: https://github.com/raalesir/
HPC_bash_align.

Siretskiy A. mr_python. Available from: https://github.com/raalesir/mr_
python.

The NCBI Sequence Read Archive. Available from: http://www.ncbi.nlm.
nih.gov/Traces/sra.

Mark A. A parallel implementation of gzip for modern multi-processor,
multi-core machines. Available from: http://zlib.net/pigz/.

1001 Genomes Project database. Available from: http://1001genomes.
org/data/software/shoremap/shoremap%5C_2.0%5C%5C/data/reads/
Schneeberger.2009/Schneeberger.2009.single%5C_end.gz.

Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and
duplicate removal tool. Bioinformatics. 2011;27(15):2159-60.

Dean J, Ghemawat S. MapReduce: Simplified data processing on large
clusters. In: Sixth Symposium on Operating System Design and
Implementation: 2004; San Francisco, CA. 2004. https://www.usenix.org/
legacy/event/osdi04/tech/full_papers/dean/dean.pdf.

Yoo AB, Jette MA, Grondona M. SLURM: Simple linux utility for resource
management. In: Job Scheduling Strategies for Parallel Processing. Berlin
Heidelberg: Springer; 2003. p. 44-60.

Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J. Galaxy
CloudMan: delivering cloud compute clusters. BMC Bioinformatics.
2010;11 Suppl 12:54.

43.

44,

45.

46.

47.

48.

49.

50.

51

Page 13 0f 13

Schénherr S, Forer L, Weissensteiner H, Kronenberg F, Specht G, Kloss-
Brandstatter A. Cloudgene: a graphical execution platform for MapReduce
programs on private and public clouds. BMC Bioinformatics. 2012;13:200.
Gurtowski J, Schatz MC, Langmead B. Genotyping in the cloud with
Crossbow. Curr Protoc Bioinformatics. 2012. Sep;Chapter 15:Unit15.3.
Fadika Z, Dede E, Govindaraju M, Ramakrishnan L. MARIANE: Using
MapReduce in HPC environments. Future Generation Comput Syst.
2014;36(0):379-88. Special Section: Intelligent Big Data Processing Special
Section: Behavior Data Security Issues in Network Information
Propagation Special Section: Energy-efficiency in Large Distributed
Computing Architectures Special Section: eScience Infrastructure and
Applications. Available from: http://www.sciencedirect.com/science/
article/pii/S0167739X13002719.

Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics. 2013;29(23):3014-9.
Schumacher A, Pireddu L, Niemenmaa M, Kallio A, Korpelainen E,
Zanetti G, et al. SegPig: simple and scalable scripting for large sequencing
data sets in Hadoop. Bioinformatics. 2014;30(1):119-20.

Krishnan S, Tatineni M, Baru C. myHadoop-Hadoop-on-Demand on
Traditional HPC Resources. San Diego Supercomputer Center Technical
Report TR-2011-2, University of California, San Diego; 2011.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing; 2010. p. 10. http://dlacm.
org/citation.cfm?id=1863103.1863113.

Wiewidrka MS, Messina A, Pacholewska A, Maffioletti S, Gawrysiak P,
Okoniewski MJ. SparkSeq: fast, scalable, cloud-ready tool for the
interactive genomic data analysis with nucleotide precision.
Bioinformatics. 2014. p. btu343 http://dx.doi.org/10.1093/bioinformatics/
btu343.

Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et
al. ADAM: Genomics Formats and Processing Patterns for Cloud Scale
Computing. Berkeley: EECS Department, University of California; 2013.
UCB/EECS-2013-207. Available from: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-207.html.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolMed Central
J

https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy
https://gigaom.com/2012/06/13/how-facebook-keeps-100-petabytes-of-hadoop-data-online/
https://gigaom.com/2012/06/13/how-facebook-keeps-100-petabytes-of-hadoop-data-online/
http://oreilly.com/catalog/9780596521981
http://www.biomedcentral.com/1471-2105/11/S12/S1
http://www.biomedcentral.com/1471-2105/11/S12/S1
www.arabidopsis.org
www.arabidopsis.org
http://compression.ca/pbzip2/
http://compression.ca/pbzip2/
http://uppmax.uu.se
http://opennebula.org
http://www.cloudera.com/content/cloudera/en/why-cloudera/hadoop-and-big-data.html
http://www.cloudera.com/content/cloudera/en/why-cloudera/hadoop-and-big-data.html
http://dl.acm.org/citation.cfm?id=1344209.1344217
http://soap.genomics.org.cn/soapsnp.html
http://soap.genomics.org.cn/soapsnp.html
https://github.com/raalesir/HPC_bash_align
https://github.com/raalesir/HPC_bash_align
https://github.com/raalesir/mr_python
https://github.com/raalesir/mr_python
http://www.ncbi.nlm.nih.gov/Traces/sra
http://www.ncbi.nlm.nih.gov/Traces/sra
http://zlib.net/pigz/
http://1001genomes.org/data/software/shoremap/shoremap%5C_2.0%5C%5C/data/reads/Schneeberger.2009/Schneeberger.2009.single%5C_end.gz
http://1001genomes.org/data/software/shoremap/shoremap%5C_2.0%5C%5C/data/reads/Schneeberger.2009/Schneeberger.2009.single%5C_end.gz
http://1001genomes.org/data/software/shoremap/shoremap%5C_2.0%5C%5C/data/reads/Schneeberger.2009/Schneeberger.2009.single%5C_end.gz
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X13002719
http://www.sciencedirect.com/science/article/pii/S0167739X13002719
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dx.doi.org/10.1093/bioinformatics/btu343
http://dx.doi.org/10.1093/bioinformatics/btu343
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Data description
	Methods
	Datasets
	Data preparation
	Computational resources
	Analysis pipelines

	Results
	Data preprocessing
	Re-archiving the data
	Efficiency of the preprocessing stage

	Mapping and variant calling
	Concordance of Hadoop and HPC results
	Scalability
	Efficiency of the calculations

	Advantages of the data locality strategy
	Hadoop I results (filled circles in Figure 5):
	HPC results (open shapes in Figure 5):

	Usability

	Discussion
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

