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Abstract

Estimating the functional interactions between brain regions and mapping those connections to corresponding
inter-individual differences in cognitive, behavioral and psychiatric domains are central pursuits for understanding the
human connectome. The number and complexity of functional interactions within the connectome and the large
amounts of data required to study them position functional connectivity research as a “big data” problem. Maximizing
the degree to which knowledge about human brain function can be extracted from the connectome will require
developing a new generation of neuroimaging analysis algorithms and tools. This review describes several
outstanding problems in brain functional connectomics with the goal of engaging researchers from a broad
spectrum of data sciences to help solve these problems. Additionally it provides information about open science
resources consisting of raw and preprocessed data to help interested researchers get started.
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Introduction
With its new emphasis on collecting larger datasets, data
sharing, deep phenotyping, and multimodal integration,
neuroimaging has become a data-intensive science. This
is particularly true for connectomicsa where thousands
of brain imaging scans, each consisting of hundreds of
observations of thousands of variables, are being collected
and openly shared through a combination of grass-roots
initiatives (e.g. the 1000 Functional Connectomes Project
(FCP) [1], the International Neuroimaging Data-sharing
Initiative (INDI) [2]) and large-scale international projects
(the Human Connectome Project (HCP) [3,4], the Brain-
netome [5], the Human Brain Project in EU known as
CONNECT [6], the Pediatric Imaging, Neurocognition
and Genetics (PING) Study [7], the Philadelphia Neu-
rodevelopmental Cohort [8], the Brain Genomics Super-
struct Project (GSP) [9], the National Database for Autism
Research (NDAR) [10], and the Nathan Kline Institute
Rockland Sample [11]). Although this deluge of complex
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data promises to enable the investigation of neurosci-
entific questions that were previously inaccessible, it is
quickly overwhelming the capacity of existing tools and
algorithms to extract meaningful information from the
data. This combined with a new focus on discovery sci-
ence is creating a plethora of opportunities for data sci-
entists from a wide range of disciplines such as computer
science, engineering, mathematics, statistics, etc., to make
substantial contributions to neuroscience. The goal of this
review is to describe the state-of-the-art in connectomics
research and enumerate opportunities for data scientists
to contribute to the field.
The human connectome is a comprehensive map of the

brain’s circuitry, which consists of brain areas, their struc-
tural connections and their functional interactions. The
connectome can be measured with a variety of differ-
ent imaging techniques, but magnetic resonance imaging
(MRI) is the most common in large part due to its near-
ubiquity, non-invasiveness, and high spatial resolution
[12]. As measured by MRI brain areas are patches of cor-
tex (approximately 1cm2 area) [13] containing millions
of neurons (calculated from [14]); structural connections
are long range fiber tracts that are inferred from the
motion of water particles measured by diffusion weighted
MRI (dMRI); and functional interactions are inferred from
synchronized brain activity measured by functional MRI
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(fMRI) [15]. Addressing the current state-of-the-art for
both functional and structural connectivity is well beyond
the scope of a single review. Instead, this review will
focus on functional connectivity, which is particularly
fast-growing and offers many exciting opportunities for
data scientists.
The advent of functional connectivity analyses has pop-

ularized the application of discovery science to brain
function, which marks a shift in emphasis from hypoth-
esis testing, to supervised and unsupervised methods for
learning statistical relationships from the data [1]. Since
functional connectivity is inferred from statistical depen-
dencies between physiological measures of brain activ-
ity (i.e. correlations between the dependent variables), it
can be estimated without an experimental manipulation.
Thus, functional connectivity is most commonly esti-
mated from “resting state” fMRI scans, during which the
study participant lies quietly and does not perform any
experimenter specified tasks; when estimated in this way,
it is referred to as intrinsic functional connectivity (iFC)
[16]. Once iFC is estimated, data mining techniques can
be applied to identify iFC patterns that covary with phe-
notypes, such as indices of cognitive abilities, personality
traits, or disease state, severity, and prognosis, to name a
few [17]. In a time dominated by skepticism about the eco-
logical validity of psychiatric diagnoses [18], iFC analyses
have become particularly important for identifying sub-
groups within patient populations by similarity in brain
architecture, rather than similarity in symptom profiles.
This new emphasis in discovery necessitates a new breed
of data analysis tools that are equipped to deal with the
issues inherent to functional neuroimaging data.

Review
The connectome analysis paradigm
In 2005 Sporns [19] and Hagmann [20] independently and
in parallel coined the term the human connectome, which
embodies the notion that the set of all connections within
the human brain can be represented and understood as
graphs. In the context of iFC, graphs provide a mathemat-
ical representation of the functional interactions between
brain areas: nodes in the graph represent brain areas and
edges indicate their functional connectivity (as illustrated
in Figure 1). While general graphs can have multiple edges
between two nodes, brain graphs tend to be simple graphs
with a single undirected edge between pairs of nodes (i.e.
the direction of influence between nodes is unknown).
Additionally edges in graphs of brain function tend to be
weighted - annotated with a value indicating the simi-
larity between nodes. Analyzing functional connectivity
involves 1) preprocessing the data to remove confound-
ing variation and to make it comparable across datasets,
2) specification of brain areas to be used as nodes, 3)
identification of edges from the iFC between nodes, and

Figure 1 Parcellation of the brain into functionally
homogenous brain regions (A) and the resulting connectome
(B). Community detection identifies seven different modules, which
are indicated by the color of the nodes in B.

4) analysis of the graph (i.e. the structure and edges) to
identify relationships with inter- or intra- individual vari-
ability. All of these steps have been well covered in the
literature by other reviews [12,17,21] and repeating that
information provides little value. Instead we will focus on
exciting areas in the functional connectomics literature
that we believe provide the greatest opportunities for data
scientists in this quickly advancing field.

Modeling functional interactions within the connectome
Defining the nodes to use for a connectivity graph is
a well described problem that has become an increas-
ingly active area of research [22]. From a neuroscientific
perspective there is meaningful spatial variation in brain
function that exists at resolutions much finer than what
can be measured using modern non-invasive neuroimag-
ing techniques. However, connectivity graphs generated at
the spatial resolution of these techniques are too large to
be wieldy and there is insufficient fine-grained informa-
tion about brain function to interpret connectivity results
at that level. For that reason, the number of nodes in the
connectome is commonly reduced by way of combining
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voxels into larger brain areas for analysis. This is accom-
plished using either boundaries derived from anatomical
landmarks [23,24], regions containing homogeneous cyto-
architecture as determined by post-mortem studies [25],
or from clusters determined by applying unsupervised
learning methods to functional data [26,27]. The latter
approach tends to be preferred since it is not clear that
brain function respects anatomical subdivisions, and sim-
ilar cells may support very different brain functions [27].
Quite a few clustering approaches have been applied to
the problem of parcellating brain data into functionally
homogenous brain areas, each varying in terms of the con-
straints they impose on the clustering solution [22,26-31].
The literature provides some evidence that hierarchical
clustering based methods perform best [22,28], but no
single clustering level has emerged as optimal. Instead, it
appears as though there is a range of suitable clustering
solutions from which to choose [22,27].
Once the nodes of a connectivity graph have been

chosen, the functional connectivity between them is esti-
mated from statistical dependencies between their time
courses of brain activity. Although a variety of bivariate
and multivariate methods have been proposed for this
purpose [17,32], there is a lot of room for new techniques
that provide better estimates of the dependencies, or pro-
vide more information about the nature of these depen-
dencies. iFC is most commonly inferred using bivariate
tests for statistical dependence, typically Pearson’s corre-
lation coefficient [16]. Since these methods only consider
two brain areas at the time, they cannot differentiate
between direct and indirect relationships. For example the
connection A ↔ C in the triangle A ↔ B, B ↔ C,
A ↔ Cmay be due to the variance thatA andC both share
with B (an indirect connection), rather than variance that
is shared uniquely by the two independent of B (a direct
connection). Indirect relationships can be excluded from
the graph using partial correlation, or inverse covariance
matrix estimation, but regularization estimators must be
employed for large number of brain areas [17,33].
Tests of statistical dependencies between brain regions

only provide information about whether or not two nodes
are connected, but it should be possible to construct a
more precise mathematical description of the relation-
ship between brain areas [34]. Several different modeling
techniques have been proposed to this end. Model con-
firmatory approaches such as structural equation mod-
eling (SEM) [35] and dynamic causal modeling (DCM)
[36] can offer fairly detailed descriptions of node rela-
tionships, but, they rely on the pre-specification of a
model and are limited in the size of network that can
be modeled. Cross-validation methods have been pro-
posed to systematically search for the best model [37-39],
but simulations have shown that those methods do not
necessarily converge to the correct model [40]. Granger

causality is another exploratory, data-driven modeling
technique that has been particularly popular due to its
promise of identifying causal relationships between nodes
based on temporal lags between them [41]. However, the
assumptions underlying Granger causality do not quite
fit with fMRI data [32], where delays in the time-courses
between regions may be more reflective of some physio-
logical phenomena, such as a perfusion deficit [42], rather
than causal relationships between brain areas. Alterna-
tively, brain connectivity can be inferred from a multivari-
ate regression that is solved using either dimensionality
reduction [34] or regularization [43]. These more precise
mathematical models of connectivity have shown great
promise for testing hypotheses of brain organization [43],
predicting response to rehabilitation after stroke data [44],
and as biomarkers of disease [45].
Functional interactions within the connectome are com-

monly considered to be static over the course of an
imaging experiment, but a growing body of research has
demonstrated that connectivity between brain regions
changes dynamically over time [46]. While most stud-
ies have measured connectivity within a short window of
the fMRI time-course that is moved forward along time
[47-50] other methods have been employed with simi-
lar results [51,52]. Several problems must be overcome
in order to reliably measure changing functional con-
nectivity patterns from the inherently slow and poorly
sampled fMRI signal. First, the variance of correlation
estimates increases with decreasing window size, mean-
ing that unless proper statistical controls are utilized, the
observed dynamics may arise solely from the increased
variance [53]. This issue may be mitigated using the
new higher speed imaging methods, which have already
shown promise for extracting dynamic network modes
using temporal independent component analysis (tICA),
although large numbers of observations are still neces-
sary [52]. Node definition is another issue, as it is unclear
whether brain areas defined from static iFC are appropri-
ate for dynamic iFC; however, initial work has shown that
parcellations of at least some brain regions from dynamic
iFC are consistent with what is found with static [49].

Mapping intra- and inter-individual variation
The ultimate goal of connectomics is to map the brain’s
functional architecture and to annotate it with the cog-
nitive or behavioral functions they subtend. This latter
pursuit is achieved by a group level analysis in which vari-
ations in the connectome are mapped to inter-individual
differences in phenotype [21], clinical diagnosis [54], or
intra-individual responses to experimental perturbations
(such as the performance of different tasks) [55-57]. Sev-
eral different analyses have been proposed for accomplish-
ing these goals, and they all require some mechanism for
comparing brain graphs [17].
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Approaches to comparing brain graphs can be differen-
tiated based on how they treat the statistical relationships
between edges. One such approach, referred to as "bag of
edges", is to treat each edge in the brain graph as a sam-
ple from some random variable. Thus, a set of N brain
graphs each with M edges will have N observations for
each of theM random variables. In this case, the adjacency
(or similarity) matrix describing the brain graphs can be
flattened into a vector representation and any of the well
explored similarity or dissimilarity metrics can be applied
to the data [12]. One of the benefits of this representa-
tion is the ability to treat each edge as independent of all
other edges and to compare graphs using mass univariate
analysis, in which a separate univariate statistical test (e.g.
t-test, anova, or ancova) is performed at each edge. This
will result in a very large number of comparisons and an
appropriate correction for multiple comparisons, such as
Network-Based Statistic [58], Spatial Pairwise Clustering
[58], Statistical Parametric Networks [59], or group-wise
false discovery rate [60], must be employed to control the
number of false positives. Alternatively, the interdepen-
dencies between edges can be modeled at the node level
using multivariate distance matrix regression (MDMR)
[61], or across all edges using machine learning methods
[62-64].
Despite the successful application of this technique, a

drawback of representing a brain graph as a bag of edges
is that it throws away all information about the struc-
ture of the graph. Alternative methods such as Frequent
Subgraph Mining (FSM) rely on graph structure to dis-
cover features that better discriminate between different
groups of graphs [65]. For instance, Bogdanov et al. [66]
were able to identify functional connectivity subgraphs
with a high predictive power for high versus low learners
of motor tasks. A recent comprehensive review [67] out-
lines other approaches that take the graph structure into
account e.g. the graph edit distance and a number of dif-
ferent graph kernels. All of these methods are under active
development and have not yet been widely adapted by the
connectomics community.
Another approach for estimating graph similarity using

all the vertices involves computing a set of graph-
invariants such as node centrality, modality, and global
efficiency, among others, and using the values of these
measures to represent the graph [68,69]. Depending on
the invariant used, this approach may permit the direct
comparison of graphs that are not aligned. Another
advantage is that invariants substantially reduce the
dimensionality of the graph comparison problem. On the
other hand, representing the graph using its computed
invariants throws away information about that graph’s ver-
tex labels [70]. Moreover, after computing these invariants
it is often unclear how they can be interpreted biologi-
cally. It is important that the invariant used matches the

relationships represented by the graph. Since edges in
functional brain graphs represent statistical dependencies
between nodes and not anatomical connections, many of
the path-based invariants do not make sense, as indirect
relationships are not interpretable [68]. For example, the
relationships A ↔ B and B ↔ C do not imply that there is
a path between nodes A and C; if a statistical relationship
between A and C were to exist they would be connected
directly.

Predictive modeling Resting state fMRI and iFC analy-
ses are commonly applied to the study of clinical disorders
and, to this end, the ultimate goal is the identification
of biomarkers of disease state, severity, and prognosis
[54]. Prediction modeling has become a popular analysis
method because it most directly addresses the question
of biomarker efficacy [62,63,67]. Additionally, the predic-
tion framework provides a principled means for validating
multivariate models that more accurately deal with the
statistical dependencies between edges compared to mass
univariate techniques, all while reducing the need to cor-
rect for multiple comparisons.
The general predictive framework involves learning a

relationship between a training set of brain graphs and
a corresponding categorical or continuous variable. Brain
graphs can be represented by any of the previously dis-
cussed features. The learned model is then applied to
an independent testing set of brain graphs to decode or
predict their corresponding value of the variable. These
values are compared to their "true" values to estimate
prediction accuracy - a measure of how well the model
generalizes to new data. Several different strategies can
be employed to split the data into training and testing
datasets, although leave-one-out cross-validation has high
variance and should be avoided [71].
A variety of different machine learning algorithms has

been applied to the analysis of brain graphs in this manner,
but by far the most commonly employed has been support
vector machines [54,72]. Although these methods offer
excellent prediction accuracy, they are often black boxes,
for which the information used to make the predictions
is not easily discernible. The extraction of neuroscientifi-
cally meaningful information from the learned model can
be achieved by employing sparse methods [73] and fea-
ture selection methods [62] to reduce the input variables
to only those essential for prediction [17]. There is still
considerable work to be performed in 1) improving the
extraction of information from these models, 2) develop-
ing techniques permitting multiple labels to be considered
jointly, and 3) developing kernels for measuring distances
between graphs.
There are a few common analytical and experimen-

tal details that limit the utility of putative biomarkers
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learned through predictive modeling analyses. General-
ization ability is most commonly used to measure the
quality of predictive models. However, since this mea-
sure does not consider the prevalence of the disorder
in the population, it does not provide an accurate pic-
ture of how well a clinical diagnostic test based on the
model would perform. This can be obtained from esti-
mates of positive and negative predictive values [74,75]
using disease prevalence information from resources such
as Centers for Disease Control and Prevention Mortality
andMorbidityWeekly Reports [76]. Castellanos et al. pro-
vide a reevaluation of generalizability metrics reported in
the connectomics prediction literature up to 2013. Also,
the majority of neuroimaging studies are designed to dif-
ferentiate between an ultra-healthy cohort and a single
severely-ill population, which further waters down esti-
mates of specificity. Instead, it is also important to vali-
date a biomarker’s ability to differentiate between several
different disease populations - an understudied area of
connectomes research [18].
Most predictive modeling-based explorations of con-

nectomes have utilized classification methods that are
sensitive to noisy labels. This is particularly problematic
given the growing uncertainty about the biological valid-
ity of classical categorizations of mental health disorders

[18]. This necessitates the use of methods that are robust
to noisy labels [77,78]. Many such techniques require
quantification of the uncertainty of each training exam-
ple’s label, which can be very difficult to estimate for
clinical classifications. Another approach that is being
embraced by the psychiatric community is to abandon
classification approaches altogether, and to instead focus
on dimensional measures of symptoms [79]. In the con-
text of predictive modeling this translates into a change in
focus toward regression models, which to date have been
underutilized for the analysis of connectomes [54].
The aforementioned dissatisfaction with extant clini-

cal categories opens up opportunities to redefine clinical
populations based on their biology rather than symp-
tomatology. This can be accomplished using unsuper-
vised learning techniques to identify subpopulations of
individuals based on indices of brain function and then
identifying their associated phenotypes, as illustrated in
Figure 2 [80]. Similar to predictive modeling, a major chal-
lenge of this approach is to find the features that are
most important for defining groups. Another problem is
regularizing the clustering solution to make sure it is rele-
vant to the phenotypes under evaluation. These issues can
be resolved using semi-supervised techniques or "multi-
way" methods that incorporate phenotypic information to

Figure 2 Identifying communities based on neurophenotypes. Brain glyphs provide succinct representations of whole brain functional
connectivity [85].
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guide clustering [81]. Along these lines, joint- or linked-
ICA methods have been used to fuse different imaging
modalities [82,83] as well as genetics and EEG data with
imaging data [84].

Evaluating functional connectivity pipelines
Analyzing functional connectivity data requires the inves-
tigator to make a series of decisions that will impact
the analysis results; examples include choosing the pre-
processing strategy for removing noise, the parcellation
method and scale for defining graph nodes, the measure
for defining connectivity, and the features and methods
for comparing connectivity across participants. Several
different possibilities have been proposed for each of these
steps and choosing the best analysis strategy is a criti-
cal problem for connectome researchers. The complexity
of this problem is highlighted by observations that both
uncorrected noise sources [86-90] and denoising strate-
gies [91,92] can introduce artifactual findings. Ideally the
choices for each of these parameters would be determined
by maximizing the ability of the analysis to replicate some
ground truth, but - as with most biomedical research -
the ground truth is unknown. Simulations provide use-
ful means for comparing the performance of different
algorithms and parameter settings, but are limited by the
same lack of knowledge that necessitates their use. Instead
researchers are forced to rely on criteria such as prediction
accuracy, reliability, reproducibility, and others for model
selection [93]. Although most published evaluations of
different connectivity analysis strategies focus on single
optimization criterion in isolation, doing so may result in
a sub-optimal choice. For example, head motion has high
test-retest reliability, as do the artifacts that are induced by
head motion [89]. As such, focusing solely on test-retest
reliability may lead to the conclusion that motion cor-
rection should not be employed. Likewise, when learning
a classifier for a hyperkinetic population, head motion-
induced artifacts will improve prediction accuracy [94].
Instead, several - ideally orthogonal - metrics should be
combined for model selection. For example, in the case
of motion correction, metrics for model selection should
include an estimate of residual head motion effects in the
data [87-90]. Failure to include measures of prediction
accuracy and reproducibility in the optimization might
result in a strategy that is too aggressive and removes
biological signal [95,96]. Going forward, the development
of new frameworks and metrics for determining the best
algorithms for connectivity analysis will continue to be a
crucial area of research.

Computational considerations
Many of the advances in connectomics research have
been spurred on by Moore’s Law and the resulting rapid
increase in the power and availability of computational

resources. However, the amount of resources, time and
memory required to process and analyze large con-
nectomics datasets remains a significant barrier for
many would-be connectomes researchers, hence provid-
ing another crucial area where computational researchers
can contribute to connectomics research. The most com-
mon approach for automating high-throughput connec-
tomics processing is to link existing neuroimaging tools
together into software pipelines. In most cases, since pro-
cessing each dataset can be performed independently,
these pipelines can be executed in parallel on large-scale,
high-performance computing (HPC) architectures, such
as multi-core workstations or multi-workstation clusters
[97-102]. The construction of these pipelines are made
possible by the modularity of most neuroimaging pack-
ages (e.g., AFNI [103], ANTs [104], FSL [105], and SPM
[106]), in which each processing step is implemented by
separate functionality, and by their reliance on the NIfTI
standard [107], which allows tools from different pack-
ages to be inter-mixed. Some steps of the pipeline are
independent as well, and many of the toolsets are multi-
threaded, providing further opportunities to speedup pro-
cessing by taking advantage of multi-core systems. Using
this strategy, the execution time for a large-scale analysis
can theoretically be sped up by the number of pipelines
that are run in parallel, but in practice this is not quite
obtainable due to overheads incurred by the increased
competition for resources (Amdahl’s Law [108]). A major
advantage of this strategy is that no modifications to the
existing neuroimaging tools are required, plus it can be
easily scaled to very large datasets, and it can take advan-
tage of everything from relatively small multi-core systems
to very large computing clusters. A disadvantage is that
it requires access to large computational resources that
are not always available, particularly at smaller research
institutions, or in developing countries.
Since the preprocessing and analysis of large connec-

tomics datasets are bursty in nature, they do not justify
the large capital costs and maintenance burden of dedi-
cated HPC infrastructures [109]. Instead, when shared or
institutional computing resources are unavailable, cloud
computing offers a “pay as you go” model that might
be an economical alternative. Catalyzed by virtualization
technology, systems such as the Amazon Elastic Com-
pute Cloud and Google Compute Engine allow users to
dynamically provision custom-configured HPC systems
to perform an analysis. Pre-configured virtual machines
such as the Configurable Pipeline for the Analysis of Con-
nectomes AmazonMachine interface (C-PAC AMI) [110]
and the NITRC Computational Environment (NITRIC-
CE) [111] eliminate many of the challenges associated
with installing and maintaining open source tools. Pre-
processing a single dataset (structural MRI and func-
tional MRI for a single participant) using the C-PAC AMI
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costs around $2.50 on Amazon EC2 using computation-
optimized compute nodes with 32 processors and 60
gigabytes of RAM, this could cost as little as $0.75 per
dataset if more economical “spot” instances are utilized.
The largest drawbacks to computing in the cloud are the
time required for data transfers and the expense.
The previously described strategies for accelerating

functional connectivity analyses rely on the data paral-
lelism that exists between datasets, but there is quite a
bit of parallelism that exists at the voxel level that can
be exploited using graphics processing unit (GPU) archi-
tectures [112]. It is well established that GPU comput-
ing systems can achieve similar computation throughputs
(floating point operations per second; FLOPS) as com-
puting clusters, using less expensive equipment and less
power [112,113]. Currently, tools that offer GPU imple-
mentations are BROCCOLI [114], freesurfer [115] and
FSL [116]. Compared to the fastest multi-threaded imple-
mentation, BROCCOLI has achieved 195× speedup for
nonlinear registration and is 33× faster for permuta-
tion testing [117]; the GPU implementation of freesurfer
achieves a 6× increase in speed for cortical extraction
[115]; a GPU implementation achieved 100× speedup for
diffusion tractography [116]; and experiments with calcu-
lating functional connectivity using GPUs found a mean
increase of 250× more speed over a CPU implementa-
tion [118]. The speedups for permutation testing enable
more accurate tests of statistical significance, as well as
the objective comparison of statistical methods [119]. For
example, the increase in speed afforded by GPUs made it
possible to perform an in-depth evaluation of the speci-
ficity of statistical parameter mapping for task fMRI anal-
yses in ten days; a simulation that would have taken 100
years on standard processors [120]. The major drawbacks
of using GPUs for connectomes analysis are that few tools
have been ported to these architectures and the additional
level of programming sophistication required to develop
software for GPUs, although programming libraries such
as OpenCL (e.g. as described in Munshi et al. [121]) are
simplifying the latter.

Open science resources for big data research
Significant barriers exists for “big data” scientists who
wish to engage in connectomics research. The afore-
mentioned imaging repositories have allowed significant
progress to be made in assembling and openly shar-
ing large datasets comprised of high-quality data from
well-characterized populations. Before a dataset can be
analyzed it must be preprocessed to remove nuisance vari-
ation and to make it comparable across individuals [93].
Additionally, the quality of the data must be assessed to
determine if they are suitable for analysis. Both of these
are daunting chores, and although several open source
toolsets are available for performing these tasks, they

require a significant amount of domain-specific knowl-
edge and labor to accomplish. The Preprocessed Con-
nectomes Project (PCP) [122], the Human Connectome
Project (HCP) [3,4], and others, are directly addressing
this challenge by sharing data in its preprocessed form.
The biggest challenge faced by these preprocessing ini-
tiatives is determining the preprocessing pipeline to be
implemented. The HCP takes advantage of the uniformity
its data collection to choose a single optimized pipeline
[123]. Favoring plurality, the PCP approaches this prob-
lem by preprocessing the data using a variety of different
processing tools and strategies. After an analysis is com-
plete, the results can be compared to previous results from
other analyses to assess their validity and to assist in their
interpretation. Several hand-curated and automatically
generated databases of neuroimaging results exist to aide
in this effort [124-127]. Several data-sharing resources
for raw and preprocessed neuroimaging data are listed
in Section “List of resources for openly shared raw and
processed neuroimaging data”; a nearly comprehensive
index of open source software packages for working with
neuroimaging data can be found at the Neuroimaging
Informatics Tools and Resources Clearinghouse (NITRC)
[128].

List of resources for openly shared raw and processed
neuroimaging data

• http://fcon_1000.projects.nitrc.org 1000 Functional
Connectomes (FCP)�: Raw resting state functional
MRI and structural MRI for more than 1200 healthy
individuals from 33 different contributors [1].

• https://thedata.harvard.edu/dvn/dv/GSP Brain
Genomics Superstruct Project (GSP)�: Raw resting
state functional MRI, and structural MRI data, along
with automated quality assessment and
pre-computed brain morphometrics, and cognitive,
personality, and behavior data for 1570 healthy,
college-age individuals (18-35 years old) acquired
using one of four MRI scanners. 1139 of the
participants have second resting-state fMRI scans
acquired from the same scanning session, and 69
have re-test scans [9].

• http://fcon_1000.projects.nitrc.org International
Neuroimaging Datasharing Initiative (INDI): A
follow-up to the 1000 Functional Connectomes
Project, which shares raw resting state functional
MRI, task-based functional MRI, structural MRI, and
diffusion MRI data for 20 different projects; nine of
which are being shared prospectively, as they are
collected, and before publication. INDI contains data
from a variety of different clinical populations and
other experimental designs [2]. Notable examples are
the http://fcon_1000.projects.nitrc.org/indi/adhd200
ADHD-200 [129], which contains 490 individuals

http://fcon_1000.projects.nitrc.org
https://thedata.harvard.edu/dvn/dv/GSP
http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org/indi/adhd200


Craddock et al. GigaScience  (2015) 4:13 Page 8 of 12

with ADHD and 598 typically developing controls,
the http://fcon_1000.projects.nitrc.org/indi/
abideAutism Brain Imaging Data Exchange (ABIDE;
539 Autism and 573 healthy controls) [130], the
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/
Consortium for Reliability and Reproducibility
(CoRR) [131], which contains test-retest datasets on
over 1600 individuals, and the http://fcon_1000.
projects.nitrc.org/indi/enhanced/ Enhanced Nathan
Kline Institute-Rockland Sample [11], which is a
community ascertained longitudinal sample with
deep phenotyping.

• http://www.humanconnectomeproject.org/ Human
Connectome Project (HCP): Raw and preprocessed
resting state functional MRI, task functional MRI,
structural MRI, diffusion MRI, deep phenotyping, and
genetics data collected from a variety of individuals,
including 1200 healthy adults (twins and non-twin
siblings) by two consortia: one between Washington
University St. Louis and University of Minnesota [4]
and another between Massachusetts General
Hospital and the University of Southern California
[3]. The connectome projects are also developing and
sharing imaging analysis pipelines and toolsets.

• http://ndar.nih.gov/ National Database for Autism
Research (NDAR)�: An NIH-funded data repository
of raw and preprocessed neuroimaging, phenotypic,
and genomic data from a variety of different autism
experiments [10].

• https://openfmri.org/ OpenFMRI: Raw and
preprocessed data along with behavioral data for a
variety of different task-based functional MRI
experiments [132].

• http://pingstudy.ucsd.edu/ Pediatric Imaging,
Neurocognition and Genetics (PING) Study: A
multisite project that has collected
“neurodevelopmental histories, information about
mental and emotional functions, multimodal brain
imaging data and genotypes for well over 1000
children and adolescents between the ages 3 and 20”
[7]. Preprocessed structural and diffusion MRI data
are also shared.

• http://www.med.upenn.edu/bbl/projects/pnc/
PhiladelphiaNeurodevelopmentalCohort.shtml
Philadelphia Neurodevelopmental Cohort: Raw
structural MRI, diffusion MRI, task functional MRI,
resting state fMRI, cerebral blood flow,
neuropsychiatric assessment, genotyping, and
computerized neurocognitive testing data for 1445
individuals, 8-21 years old, including healthy controls
and individuals with a variety of diagnoses [8].

• http://preprocessed-connectomes-project.github.io/
Preprocessed Connectomes Project (PCP)�:
Preprocessed data, common statistical derivatives,

and automated quality assessment measures for
resting state fMRI, structural MRI, and diffusion MRI
scans for data shared through INDI [122].

�These repositories contain data that is also available in
INDI.

Conclusion
Functional connectomics is a “big data” science. As high-
lighted in this review, the challenge of learning statisti-
cal relationships between very high dimensional feature
spaces and noisy or underspecified labels is rapidly emerg-
ing as rate-limiting steps for this burgeoning field and its
promises to transform clinical knowledge. Accelerating
the pace of discovery in functional connectivity research
will require attracting data science researchers to develop
new tools and techniques to address these challenges. It is
our hope that recent augmentation of open science data-
sharing initiatives with preprocessing efforts will catalyze
the involvement of these researchers by reducing common
barriers of entry.

Endnote
aConsistent with the literature, we use the term

connectome to refer to the sum total of all connections in
the human brain, and connectomics to refer to the
scientific field dedicated to studying these connections.
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