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Computational methods for optical mapping
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Abstract

Optical mapping and newer genome mapping technologies based on nicking enzymes provide low resolution but
long-range genomic information. The optical mapping technique has been successfully used for assessing the
quality of genome assemblies and for detecting large-scale structural variants and rearrangements that cannot be
detected using current paired end sequencing protocols. Here, we review several algorithms and methods for
building consensus optical maps and aligning restriction patterns to a reference map, as well as methods for using
optical maps with sequence assemblies.
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Introduction
Prior to the advent of cheap high-throughput sequencing
technologies and corresponding analytical tools, such
as genome assemblers, genomic mapping approaches
provided scientists with a first glimpse at the large-scale
structure of the chromosomes of organisms. Among the
many competing technologies for mapping (e.g., see [1]
for a review of other approaches), the optical mapping
technology [2] for the first time, provided the ability to
identify the location and order of restriction sites along
DNA molecules, thereby enabling the efficient construc-
tion of accurate genome-scale restriction maps. Since the
initial demonstration of this system in the yeast Saccharo-
myces cervisiae, optical mapping has been used to validate
and assist the reconstruction of multiple genomes ranging
from bacteria [3] to the human genome [4]. This technol-
ogy has also been demonstrated to be a powerful tool for
comparative genomics allowing the detection of structural
variants within genomes [4,5]. Recently, an evolution of
the optical mapping technology – nanocoding – was de-
veloped [6], promising higher accuracy and throughput
than the original optical mapping system.
Before describing the computational approaches for

analyzing optical (or nanocoding) mapping data, we will
briefly describe the key characteristics of these data. The
mapping experiment begins with large DNA molecules
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(hundreds of thousands of base-pairs) which are immobi-
lized on a surface, digested with one or more restriction
enzymes, and stained with a fluorescent dye (Figure 1).
The series of cuts or nicks produced by the restriction
enzyme are detected by imaging the immobilized DNA,
and the length between consecutive cut sites is estimated
by integrating the fluorescence intensity. The resulting
data is an ordered series of fragment lengths, correspond-
ing to the estimation by machine imaging of the distances
between nicks or cuts. These data commonly contain a
number of errors, such as inaccurate estimates of restric-
tion fragment size (due to non-uniform fluorescent stain-
ing), missing or extra restriction sites, or missing small
restriction fragments (due to limitations of the experimen-
tal and/or imaging components of the system). Further-
more, these data only span individual DNA molecules.
Information from multiple overlapping DNA molecules
that originate from the same genomic location needs to be
combined/assembled in order to construct chromosome-
wide maps. The map assembly process can also correct
many of the above-mentioned errors. Throughout the
following we will refer to single DNA molecule optical
maps (the restriction fragments sized and ordered) as
Rmaps and to the consensus maps of the assembled
Rmap contigs as consensus optical maps.
It should be obvious from this brief description that

computational analysis software must be an integral part
of the generation and use of optical mapping data. After
machine vision software necessary to generate the initial
raw data (which is beyond the scope of our review),
computational tools are necessary to align to each other
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Figure 1 Optical mapping experiment. In an optical mapping experiment, stretched DNA molecules are deposited on a charged glass surface
using an array of microfluidic channels (a) and digested with a methylation-insensitive restriction enzyme that cuts the DNA at specific sequence
based recognition sites (b). The stretched DNA relaxes around the cut sites, but in the process, small restriction fragments can be lost through
desorption. The DNA molecules are then stained with fluorescent dye and imaged. Restriction fragments are identified with machine vision and
the fragment lengths are estimated by integrating fluorescent intensity (c). For each molecule this produces an ordered listing of restriction
fragment lengths known as an Rmap (d).
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Figure 2 Optical mapping experimental errors. Experimental
errors in the optical mapping of individual molecules include (a)
missing enzyme cut sites due to incomplete digestion, (b) extra
enzyme cut sites due to random breakage of the DNA molecule,
(c) missing small fragments due to desorption, and (d) sizing error
due to noise in measurements of fluorescence intensity. The ideal,
error-free map is shown in black, and the experimentally observed
map is shown in blue.
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and assemble together individual Rmaps, as well as to
align the assembled maps to each other (e.g., when identi-
fying structural variants), or to genomic sequences (e.g., to
validate or assist the genome assembly process). Below we
review the key principles underlying these operations as
well as published software tools for using and analyzing
optical mapping data.

Review
Methods for optical map alignment
One fundamental problem in using genome maps is the
task of aligning restriction maps, either to each other or
to a genome sequence. The alignment scoring functions
must take into account the error characteristics of the
mapping experiment, including fragment sizing error,
missing and false restriction sites, as well as missing
fragments (Figure 2). Dynamic programming algorithms
for alignment can accommodate missing restriction sites,
false restriction sites, and missing fragments by allowing
for different alignment extensions (Figure 3). Alignment
methods must accommodate some sizing error since an
experimental Rmap fragment size will rarely be an exact
match to the corresponding fragment in another Rmap
or in the reference genome. For this reason, alignment
scoring functions allow for small differences, but penalize
large differences in restriction fragment size.
There are several different flavors of the alignment

problem: (i) The alignment of individual Rmaps to detect
overlaps – a critical step for the de novo assembly of an
optical consensus map, (ii) the alignment of individual
Rmaps to an optical consensus map to call structural
variants, or (iii) the alignment of in silico restriction
maps derived from contigs or scaffolds from sequence
assembly to a consensus optical map. Here we review
several of the published alignment methods, as well as a
method for determining alignment significance.

Alignment methods
Valouev et al. [7] have developed an alignment algorithm
for both finding overlaps between two optical maps and
aligning an optical map to a reference map. The scoring
function is defined as a log likelihood ratio test for a
model that makes the following assumptions: the size of
genomic restriction fragments are distributed exponen-
tially; the observations of each restriction site in an optical
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Figure 3 Dynamic Programming for optical map alignment.
Optical map aligners, such as the aligner by Valouev [7] and SOMA
[9] use dynamic programming to compute the optimal scoring
alignment. Let cell (i, j) in the dynamic programming matrix, colored
in green, represent the optimal partial alignment of the query map
of m fragments through the ith restriction site to the reference map
of n fragments through the jth restriction site such that site i is
matched to site j. To allow for unmatched restriction sites in the
alignment, the score for cell (i, j) is determined by attempting to
extend previously computed alignments in an adjacent δ2 region of
the matrix, colored in blue. This allows for up to δ − 1 consecutive
unmatched sites in both the query and the reference. The
alignment method is then O(δ2mn).
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map are independent Bernoulli processes; the number of
false cuts in a given genomic length is a Poisson process;
and fragment sizing error is distributed normally with
mean zero and variance that scales linearly with the true
fragment size. A separate normal sizing error model is
used for fragment sizing error for small restriction frag-
ments below a specified threshold. Lastly, the authors put
a bound on the number of restriction fragments allowed
between consecutively matched restriction sites, leading
to a dynamic programming algorithm which runs in time
proportional to mn where m and n are the number of
restriction sites in the aligned maps (Figure 3). This align-
ment tool has been successfully used for overlapping Rmaps
as part of de novo optical map assembly [8].
SOMA [9] is another alignment tool designed specific-

ally for aligning sequence contigs from a genome assembly
to a consensus optical map. First, the contigs are con-
verted into an in silico restriction map by noting the loca-
tion of the enzyme’s recognition sites within the contig
sequence. Next, the software finds good placements of
contigs to the optical map using a dynamic programming
algorithm. Lastly, SOMA uses this set of good alignments
to select a layout of non-overlapping alignments to the
consensus map, in effect constructing a genome-wide
scaffold of contigs. The dynamic programming algorithm
for alignment uses a chi-squared scoring function to
penalize restriction fragment sizing error and a fixed cost
penalizing each unaligned site in both the reference map
and contig in silico map. The statistical significance of
alignments is determined by performing a permutation
test for each contig with sufficient restriction sites. For
contigs with multiple significant alignments, an F-test is
used to further filter out secondary alignments by compar-
ing the ratio of the best alignment’s chi-square score to
that of each the secondary alignment. Finally, SOMA uses
a scheduling algorithm to find non-overlapping place-
ments of the contigs to the optical map. The goal is to find
the maximum weight layout, where each contig placement
is weighted by the match significance, given as the p-value
from either the permutation test or the F-test. Several
different scheduling algorithms are considered, includ-
ing a greedy algorithm which prioritizes the placement
of contigs with the highest match significance, provided
it does not overlap the best scoring scheduling of the
remaining fragments (GREEDY); an expensive algorithm
which enumerates all possible layouts using depth-first
search with pruning of low scoring layouts (ASTAR); and
a simple, heuristic approach which places contigs in de-
scending order of match significance such that there are
no overlaps (match filtering).
TWIN [10] is a new tool for aligning in silico contigs

to a consensus optical map using an FM-Index. TWIN
converts contigs into a restriction pattern by performing
an in silico of the contig sequence. An FM-Index is con-
structed on the ordered integer sequence of restriction
fragment lengths given by the consensus optical map,
which allows for the efficient search for exact matches of
patterns of n consecutive fragments. Once the FM-index
is constructed, the run time is proportional to the num-
ber of fragments in the contig. To account for fragment
sizing error, TWIN modifies the FM-Index backward
search algorithm to backtrack along possible alignment
choices that are consistent with the current fragment in
the query. To reduce computational effort during the
backtrack procedure, TWIN relies on an integer wavelet
tree auxiliary data structure which allows the algorithm
to focus on just those optical fragments within the
current FM-index interval that are consistent with the
current query fragment. A drawback of this algorithm is
its inability to handle unmatched restriction sites such
as those caused by missed fragments or restriction sites.

Significance of alignments
All alignment algorithms face the challenge that under
any alignment scoring scheme, a given query restriction
pattern may have multiple good quality alignments to
the reference or consensus map. In cases when the
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alignment score depends on the number of restriction
fragments and length of the query sequences, as in [7], a
simple alignment score threshold is not sufficient to
distinguish between ambiguous alignments. Sarkar et al.
[11] observe that the optimal alignment scores of a
query restriction pattern to permuted versions of the
true reference map are highly correlated. In other words,
the best alignment scores for spurious alignments de-
pend on properties of the query map itself. The authors
model the distribution of alignment scores for spurious
alignments so they can use a map specific cutoff for
determining alignment significance. In particular, the au-
thors model the optical alignment score under the null
hypothesis that the alignment is spurious using multiple
linear regression on the number of query map fragments
N, the map length L, and their product NL. The stand-
ard deviation of the optimal alignment score against a
random spurious reference is modeled as a linear function
of the mean optimal alignment score. The regression
model is fit by aligning a set of query maps to a single per-
muted reference map, avoiding the computational bottle-
neck of performing a permutation test for each aligned
query map against a set of permuted reference maps.
Sarkar et al. also use logistic regression to predict the
probability that a query map will have an alignment to a
reference genome given the query map’s information con-
tent. This logistic model can be used to filter out query
maps that are unlikely to align, saving computational re-
sources. The authors demonstrate how an iterative optical
map assembly algorithm performs better when using
optical map alignments that are deemed significant using
query-specific thresholds.

Algorithms for optical map assembly
An optical mapping experiment produces a restriction
map (Rmap) for a collection of DNA molecules on the
order of ~500 kb in length. As in shotgun sequencing,
these molecules are produced by randomly shearing the
DNA from the organism of interest. It is therefore ne-
cessary to assemble the Rmaps in order to produce a
more contiguous, higher quality consensus optical map.
A consensus map is formed by computing a consensus
restriction pattern for Rmaps that share compatible pat-
terns and are therefore highly likely to have originated
from the same place in the genome. Each assembled
consensus restriction pattern is known as an optical map
contig. Each optical map contig is characterized by both
its consensus restriction pattern and a layout that pro-
vides the position and orientation of each Rmap used in
its construction.
The Gentig algorithm [12] is the first published

method for the assembly of consensus optical maps for
shotgun optical mapping experiments. The method uses
a Bayesian formulation, and seeks to maximize the a
posteriori estimate of the consensus map assembled from
the Rmaps. A prior probability distribution H on the con-
sensus map is selected as a decreasing function of contig
length, giving a prior bias for shorter (i.e., more assem-
bled) contigs. This prior helps select assemblies that do a
better job of overlapping and incorporating the experi-
mental optical maps. Contigs are built by greedily merging
the two best overlapping Rmaps or contigs, where over-
laps are computed using dynamic programming. Overlaps
are only considered if the match scores better than a spe-
cified threshold that controls for false overlaps between
two unrelated restriction maps. Gentig constructs its prior
and overlap scores using a probabilistic model which ac-
counts for the errors inherent in optical mapping, includ-
ing sizing errors, missing cut sites due to partial enzyme
digestion, and false cut sites due to imaging artifacts.
While Gentig has successfully been used to assemble

bacterial genomes, it does not scale well to larger genomes
where the number of input Rmaps is large. Procedures
have been developed to use Gentig in an iterative fashion
for de novo optical map assembly of larger genomes by
first randomly partitioning the input Rmaps into separate
groups, and then running Gentig independently on the
groups to produce a set of contigs. Since there may be du-
plicate or overlapping contigs between the independent
assemblies, Gentig is used to assemble all of the contigs
together to remove any redundancy, yielding a set of seed
contigs. The input Rmaps are then aligned to the seed
contigs as a means to cluster the Rmaps based on similar-
ity, and then these “piles” of Rmaps are independently
assembled using Gentig to produce a new set of contigs.
This process is repeated for several iterations, producing a
final set of contigs. Variations of this method have been
used to build de novo optical map assemblies for Leish-
mania major Friedlin (34.7 Mb) [13], Oryza sativa (rice,
382 Mb) [14], Zea mays L. (maize, 2.5 Gb) [15], and
Melopsittacus undulatus, (parakeet, 1.2 Gb) [16].
Valoeuev et al. [8] have implemented an optical map

assembler based on the overlap layout consensus (OLC)
paradigm of sequence assembly. The overlap graph con-
sists of Rmaps, represented as nodes, and significant
overlaps, represented as edges between the Rmaps. First,
pairwise overlaps are constructed between all of the
Rmaps. This is the most computationally intensive step
and is performed on a computing cluster. High scoring
overlaps are selected to construct the overlap graph. The
graph is cleaned by removing potential false overlaps by
identifying paths through the overlap graph that are
weakly supported. The set of edges is further refined by
removing any edges which disagree with higher scoring
information. Additional false edges are removed from
the graph by considering edges that form a path between
two nodes for which there is no alternative path with a
consistent distance. Lastly, chimeric maps are identified
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as local articulation nodes. Valouev et al. demonstrate
their optical map assembler by producing consensus
maps for Yersinia pestis KIM, Escherichia coli K12,
Thalassiosira pseudonana, O. sativa ssp japonica (rice),
and Homo sapiens.

Applications
Structural variation
A promising application of optical mapping technology
is the characterization of structural variation within
genomes. Optical mapping data span much longer gen-
omic ranges that commonly achievable mate-pair sizes,
and thus have the ability to detect large-scale variants
that cannot be detected using paired end reads.
Teague et al. [4] have successfully used optical maps

to detect structural variants in four normal human sam-
ples compared to the human reference genome, detecting
both small variants, such as missing or extra enzyme cut
sites, as well as large-scale insertions, deletions and inver-
sions, ranging from thousands to millions of base pairs in
size. Variants were detected by first constructing an op-
tical consensus map for each sample using an iterative
assembly strategy initially guided by an in silico map of
the human reference. First, the Rmaps were aligned to the
reference in silico map as a means to cluster the Rmaps
with similar restriction patterns. Next, each cluster of
maps was assembled using the Gentig software to produce
a contig (i.e., consensus restriction pattern) for the cluster.
The assembled contigs from all of the clusters were used
in place of the reference in the second iteration, and the
Rmaps were again aligned and assembled to produce a
new set of Rmap contigs. This process was repeated for
eight iterations, yielding a high quality consensus optical
map for that sample. Structural variants between each as-
sembled sample and the human reference were called by
looking at the depth of Rmap coverage supporting each
variant. A p-value was assigned to each variant call for
missing cuts and extra cuts through a Binomial test and
for indel calls using a Z-test derived from the sizing error
model. The paper demonstrates that each of the four
samples has hundreds of unique structural variants that
are neither present in the other samples nor the human
reference.
Optical mapping has also been used to characterize

structural variants in oligodendroglioma [17], a type of
brain cancer. A similar iterative assembly strategy was
used to assemble a consensus optical map for two dif-
ferent tumor samples, HF087 and HF1551. Over 1,000
structural variants were called between each sample
and human reference. In addition, a hidden Markov
model (HMM) was trained on normalized Rmap coverage
to determine the copy number at each chromosomal
location. Loss of heterozygosity (LOH) events in which
one copy of the chromosome is lost were observed in
chromosomes 1, 14, 19, and 21. In addition, coverage
analysis of Rmaps obtained from two adjacent slices of
sample HF1551 revealed distinct LOH events for each
slice, suggesting that these adjacent slices of the same
tumor actually evolved from different cancer cell clones.

Genome assembly
Consensus optical maps provide long-range informa-
tion over the length of a genome that can be used to
aid in genome sequence assembly and validation. As-
sembly algorithms are graph based, where sequences
are represented as nodes and overlaps between se-
quences are represented as edges. Each path through
the assembly graph generates a sequence, and each
possible path gives a possible reconstruction of the
genome. Genomic repeats introduce nodes that must
be traversed multiple times, thereby tangling the as-
sembly graph.
AGORA [18] presents a method for guiding genome

assembly to resolve repeats using optical maps by select-
ing the correct path among exponentially many paths
consistent with the set of reads. AGORA works by first
aligning long sequence contigs extracted from de Bruijn
graph edges to the consensus optical map. All contigs
with a unique placement give a genome wide scaffold
(i.e., layout). Gaps in the scaffold are filled by greedily
selecting a path in the de Bruijn graph between consecu-
tively aligned contigs that is consistent with the restriction
pattern of the optical map, thereby resolving repeats. The
path is selected using a bounded depth-first search. Simu-
lations with AGORA on error-free de Brujin graphs for
bacterial genomes and simulated optical maps suggest that
high quality consensus optical maps can accurately im-
prove assembly contiguity.
Xavier et al. [19] have demonstrated how optical con-

sensus maps can be used to assess assembly accuracy
when selecting from a set of candidate assemblies con-
structed under different assembly parameter settings. In
a de Bruijn graph assembly, a critical parameter is the
k-mer length, which controls the length of the overlap
used. Generally, a larger k-mer setting results in a more
aggressive assembly that improves assembly contiguity
at the expense of accuracy, while a smaller k-mer setting
gives a conservative but accurate assembly at the expense
of contiguity, as the de Bruijn graph has branches for
genomic repeats of length ≥ k. Xavier et al. built multiple
de novo assemblies for Methicillin-resistant Staphylococ-
cus aureus (MRSA) using different assemblers and a
wide range of k-mer settings. The authors detected mis-
assemblies by finding contigs that have a split alignment
to the optical consensus map, then selected the assem-
blies with highest contiguity (i.e., with the most resolved
repeats), but which did not exhibit any mis-assemblies
with respect to the optical map.
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Furthermore, optical maps have also proven useful for
validating existing genome assemblies and characterizing
mis-assemblies. In the case of the O. sativa (rice) genome
[14], an optical consensus map was used to compare the
quality of two independently constructed assemblies, one
by TIGR and the other by the International Rice Genome
Sequencing Project. Consensus optical maps have also
been used as part of the Assemblathon 2 competition [20]
to assess the quality of de novo assemblies for a budgerigar
(Melopsittacus undulatus) a Lake Malawi cichlid (May-
landia zebra), and boa constrictor (Boa constrictor con-
strictor). The consensus optical maps were iteratively
assembled using Gentig. Assembly quality was assessed by
aligning sequence scaffolds constructed from paired-end
reads to the optical consensus map under different levels
of alignment stringency. Scaffolds that globally align to
the optical map under the most restrictive setting are con-
sidered correct, while scaffolds that only have local align-
ments are considered to have mis-assemblies.

Conclusions
In this paper we have reviewed algorithms and tools for
processing optical mapping data (alignment and assembly)
and for using these data to identify structural variants, and
to guide or validate genome assemblies. Due to the long
range information provided by optical mapping data (po-
tentially spanning hundreds of kilo-base-pairs or more)
and the relatively complex and error-prone approaches for
constructing long mate-pair libraries in the context of
modern sequencing technologies, optical mapping data
hold tremendous promise in supplementing or even re-
placing sequencing data in the study of chromosomal
rearrangements.
Despite this promise, as you can see from our review,

relatively few methods exist for analyzing and using
optical mapping data, and even fewer are available in
effective publicly-available software packages. While
Gentig has successfully been used to assemble consen-
sus optical maps for bacterial genomes, it does not
scale well to large genomes, and the software is not
freely available. Beyond AGORA, which is a proof of
concept implementation, no genome assembler can
make use of optical mapping information. Further-
more, there are virtually no tools available for using
optical maps to characterize structural variants. The
alignment tools reviewed above could and have been
used for this purpose, but only through the manual
curation of the raw alignment output rather than
through the use of specialized structural variant discovery
tools. There is, thus, a critical need for the continued
development and public release of software tools for
processing optical mapping data, mirroring the tremendous
advances made in analytical methods for second- and
third-generation sequencing data.
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