Wollny and Kellman GigaScience 2014, 3:23
http://www.gigasciencejournal.com/content/3/1/23

(GlgA)”
CIEN<E

RESEARCH Open Access

Free breathing myocardial perfusion data sets
for performance analysis of motion
compensation algorithms

Gert Wollny'?" and Peter Kellman?

Abstract

could be confirmed.

Background: Perfusion quantification by using first-pass gadolinium-enhanced myocardial perfusion magnetic
resonance imaging (MRI) has proved to be a reliable tool for the diagnosis of coronary artery disease that leads to
reduced blood flow to the myocardium. The image series resulting from such acquisition usually exhibits a breathing
motion that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. Various
algorithms have been presented to facilitate such a motion compensation, but the lack of publicly available data sets
hinders a proper, reproducible comparison of these algorithms.

Material: Free breathing perfusion MRI series of ten patients considered clinically to have a stress perfusion defect
were acquired; for each patient a rest and a stress study was executed. Manual segmentations of the left ventricle
myocardium and the right-left ventricle insertion point are provided for all images in order to make a unified
validation of the motion compensation algorithms and the perfusion analysis possible. In addition, all the scripts and
the software required to run the experiments are provided alongside the data, and to enable interested parties to
directly run the experiments themselves, the test bed is also provided as a virtual hard disk.

Findings: To illustrate the utility of the data set two motion compensation algorithms with publicly available
implementations were applied to the data and earlier reported results about the performance of these algorithms

Conclusion: The data repository alongside the evaluation test bed provides the option to reliably compare motion
compensation algorithms for myocardial perfusion MRI. In addition, we encourage that researchers add their own
annotations to the data set, either to provide inter-observer comparisons of segmentations, or to make other
applications possible, for example, the validation of segmentation algorithms.
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Background

Perfusion quantification by using first-pass gadolinium-
enhanced myocardial perfusion magnetic resonance
imaging (MRI) has proved to be a reliable tool for the
diagnosis of coronary artery disease that leads to reduced
blood flow to the myocardium. With a typical imag-
ing protocol, images are usually acquired for 60 seconds
and the acquired image series includes some pre-contrast
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baseline images, with the full cycle of contrast agent first
entering the right ventricle (RV), then the left ventricle
(LV), and finally perfusing the LV myocardium (Figure 1).
In order to quantify blood flow, the image intensity in the
myocardium is tracked over time ([1,2]).

In order to perform an automatic assessment of the
intensity change over time, no movement should occur
between images taken at different times. Electrocardiog-
raphy (ECQ) triggering is used to ensure that the heart is
always imaged at the same cardiac phase. However, since
the 60 seconds acquisition time span is too long for the
average person to hold their breath, breathing movement
is usually present in the image series.
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(a) RV peak

(b) LV peak

(C) myocardial perfusion

Figure 1 Example images from a first-pass gadolinium-enhanced myocardial perfusion MRI study (patient 5, stress, apical slice): RV
enhacement peak (a), LV enhancement peak (b) and myocardial perfusion (c). Note, the hypointense region in the perfused myocardium
(c) indicates a reduction in blood flow, i.e. the medical condition that needs to be quantified for the assessment.

To compensate for this breathing motion by image pro-
cessing methods two problems have to be overcome: The
motion to be compensated for itself, and the rather strong
intensity change that is induced by the contrast agent. A
wide variety of methods have been proposed to eliminate
the motion from the images series by image registration.
Image registration is the process of finding a transforma-
tion that maps on image, the moving or floating image to
another image, the template or reference image so as to
optimize a measure describing the similarity of these two
images.

Some motion compensation methods rely on linear
registration only (i.e. only a linear transformation is opti-
mized), for example, translation [3-7], or translation and
rotation [8,9]. Note, that in addition to translation and
rotation a linear transformation may also comprise scaling
and shear.

However, since the breathing movement results in the
heart moving within the barely moving chest, the all-over
movement pattern is highly non-linear, and masking is
needed to extract a region of interest (ROI) around the
heart that must be small enough to not contain non-
moving body parts but big enough to accommodate the
full movement range of the heart itself. In addition, linear
registration does not account for the non-linear defor-
mations of the myocardium itself. On the other hand,
employing non-linear registration does not require the
extraction of a bounding box and it can also compensate
for the non-linear deformations of the heart.

To overcome the challenge of changing intensities one
can optimize statistical image similarity measures such
as mutual information or cross correlation (e.g. [10,11]),
or gradient based measures [12,13]. One can minimize
the amount of intensity change between images by only
running the image registration for image pairs in direct

temporal succession, and then align all images to one
reference by accumulating the obtained transformations
[11,12,14]. However, this accumulation of transformation
may also result in the accumulation of small registration
errors, and may, therefore, result in considerable large
errors in the overall alignment for time steps that are
“far away” from the common reference in the tempo-
ral succession. An alternative is to model the intensity
change and create motion-free images that can then be
used as reference images for a following registration step
[13,15-20]. Since the motion manifests itself as a high fre-
quency component in intensity change over time it has
also been proposed to work in the frequency domain
and remove these high frequency components [6]. For
detailed review of motion compensation methods that can
be applied to myocardial perfusion image series the reader
is referred to [21].

A fair comparison of these algorithms requires that
common data is used for the validation procedure, but
because of the personal nature of the medical data used, its
free redistribution is usually impeded by patient privacy
concerns.

Here we present a manually segmented series of myo-
cardial perfusion data sets that were acquired with a free
breathing protocol, along with the required patient con-
sent, anonymization, and un-linking that makes its free
redistribution possible. In addition we give an overview
of the provided data, as well as provide results of motion
compensation experiments run with the data that repli-
cate work presented elsewhere [13,20]. In these pub-
lications the experiments were executed with different
data sets that could not be redistributed freely. Finally,
we give short descriptions of the applied motion com-
pensation exploiting the quasiperiodicy of the breathing
movement (QUASI-P) [13] and motion compensation
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using independent component analysis and a spline based
non-linear registration scheme (ICA-SP) [20] used to run
these experiments, including the small enhancements we
applied with respect to their original implementation.

Data description

Acquisition and data features

In total, anonymized and unlinked data sets of ten patients
considered clinically to have a stress perfusion defect
are made available. The data was acquired under clinical
research protocols approved by the Institutional Review
Boards of the National Heart, Lung, and Blood Insti-
tute and Suburban Hospital (Bethesda, MD, USA). The
patients provided written informed consent, and the anal-
ysis and data repository were approved by the NIH Office
of Human Subject Research. For each patient, both rest
study and stress studies were executed and the perfusion
images were acquired by using a free breathing protocol.
However, patient six had extremely shallow breathing so
that the rest study appears to be acquired with a complete
breath hold (i.e. it contains no visible motion), and the
stress study only exhibits shallow breathing. For the first
patient images were taken in only 45 time steps, and for
the remaining nine patients images were taken in 60 time
steps. In all cases, three slices (at the base, mid, and api-
cal level) were acquired. Hence, in total 60 2D image series
are provided in the data set (two studies for each of the 10
patients with three slices each). An overview of the data
sets is given in Table 1.

For all patients, a half dose of contrast agent (Gd-DTPA,
0.05 mmol/kg) was administered at 5 ml/s, followed by
20 ml saline flush. The first two time steps of each series
comprise proton density weighted images that may be
used for intensity inhomogeneity correction (see, e.g.,
[11]); however, this intensity correction is not consid-
ered here. The remaining slices were acquired by using
the slew rate — fast low angle shot (SR-FLASH) proto-
col. For all series TR/TE=2.41/1.06, except for patient 6
(TR/TE=2.43/1.22). The images series were reconstructed
to a final matrix size of 256 x 192 (3/4 phase FOV)
using zero filling for interpolation. The resulting inter-
polated spatial pixel resolution is 1.4 mm x 1.4 mm for
patients 1-5, 9 and 10, and 1.6 mm x 1.6 mm for the
patients 6, 7, and 8. An example of the key perfusion time
steps — RV enhancement, LV enhancement, and myocar-
dial perfusion — at the base level is given in Figure 1.

The series images are all provided as anonymized
DICOM files and as 8-bit PNG files. A linear mapping
from the 16-bit DICOM pixel intensity range to the 8-bit
PNG intensity range was applied that maximizes visual
quality and the mapping parameters were selected indi-
vidually. Therefore, the 8-bit data should not be used
for measurements that aims at comparing data from dif-
ferent slice series. PNG files are required because the
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segmentation software [22] used is currently limited to
image formats that are directly supported the Android
operating system.

Segmentations

The segmentations are given as XML files that can be read
and written by the segmentation software [22] as well as
the related software in the toolkit for gray scale medical
image analysis (MIA) [23] used here to run the exper-
iments described below. The validating XML-scheme is
provided with the data, for an example XML file see
Listing 1; an example of a segmented slice is given in
Figure 2.

Listing 1 Elements of a segmentation set. The work set
consists of a description where RV and LV peak enhance-
ment frame can be stored, and a number of images
(frames). For each frame, the star defined by its center and
rays is defined with the first ray passing through the RV
insertion point. Then the segmentation sections are given
as closed lines of the endo- and epicardium.

<?xml version="1.0" encoding="UTF-8"7?>
<workset version="2">
<description>
<RVpeak value="12"/>
<LVpeak value="20"/>
</description>
<frame image="data001l.dcm">
<star r="16.420766" x="95.715692"
y="132.149447">

<point x="-0.986293" y="-0.165001"/>
<point x="0.636042" y="—-0.771654"/>
<point x="0.350251" y="0.936656"/>
</star>
<section color="#ff00ffff">
<point x="79.604330" y="127.277650"/>
<point x="79.473450" y="126.995224"/>
<point x="79.514786" y="126.506150"/>

</section>
</frame>
<!— more frames —>
</workset>

Specifically, the images of each study are separated into
three segmentation sets (0 — apical, 1 — middle, and 2 -
basal slice). For each frame, that is for each slice and
time step of a study set, the following features were seg-
mented: The epi-and endocardium are outlined, and with
three points the circumcircle of the LV including the
myocardium is identified (Figure 2). The first of these
three points is co-located with on of the two RV insertion
points (anterior or posterior; consistently selected over
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Table 1 Available data sets
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Patient Time steps Breathing regularity Image quality Spatial intensity homogeneity Remarks
Rest 3 5 Low
1 45
Stress 4 5 Low
Rest 5 5 Medium
2 60
Stress 4 4 Medium
Rest 5 5 Low
3 60
Stress 5 4 Low
Rest 5 5 Low
4 60
Stress 5 5 Low
Rest 2 5 Medium
5 60
Stress 4 5 Medium
Rest - 3 High No movement
6 60
Stress 3 3 High Shallow breathing
Rest 5 5 Medium
7 60
Stress 5 5 Medium Slow breathing rate
Rest 5 5 Medium
8 60
Stress 5 5 Medium
Rest 4 4 Medium
9 60
Stress 5 4 Medium
Rest 3 5 Low
10 60
Stress 3 5 Medium

The rating (5 = best) for breathing regularity, image quality, and intensity inhomogeneity is subjective and based on visualizing the series as a looping video.

the whole image series), thereby making it possible to con-
sistently divide the myocardium into sections for further
analysis.

In some frames, especially in the pre-contrast phase tis-
sue boundaries can hardly be identified because of missing

Figure 2 Segmented slice of a perfusion series. The epi- and
endocardium are here colored in cyan and red respectively. The
circumcircle is estimated based on three points on the epicardium.
Here, the first point, indicated by a little circle, is co-located with the
anterior RV insertion point forming the basis for consistently dividing
the myocardium into sections of equal sizes.

intensity gradients, for an example see Figure la. Here,
for consistency of the data (i.e. two contours per slice) a
segmentation is guessed.

This has two implications: Firstly, validation based on
overlap and boundary distance measures can not be
applied. Secondly, consider the automatic evaluation of
a time-intensity curve for a myocardical section: Here, a
mask taken from one manually selected frame is applied
to all images to evaluate the corresponding average inten-
sities. This mask must stem from a properly segmented
frame, since the mask should only cover the myocardium
in all images of a series. On the other hands, for the eval-
uation of the Ground Truth time-intensity curve, each
mask is only used for its corresponding frame. Since the
intensities are evaluated as averages over the enclosed
regions, an error in the outlining of such a region of
homogeneous intensities is of no consequence to the
value of this intensity average. Hence, the correct Ground
Truth time-intensity curve can be obtained despite the
segmentation in some frames not being anatomically
correct. Considering that the perfusion analysis measure
focuses on local intensity changes in the myocardium,
basing the validation of motion compensation meth-
ods on only these time-intensity curves is a viable
approach.
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Analyses

Two distinct experiments were executed: Firstly, motion
compensation was applied to the data sets 1-5 and 7-10
acquired under rest and stress by using the algorithms
QUASI-P [13], and ICA-SP [20]; the latter with the
enhancements as described in the Methods section. Sec-
ondly, both algorithms where applied to the motion-free
data set 6-rest in order to analyze how the algorithms
preserve this initially motion-free data. To run the exper-
iments we used the implementation provided with MIA
[23].

The parameters for running both methods were set
similar to [20], that is, with QUASI-P a gradient decent
method was used for optimization (start step size 0.01,
stopping condition epsilon 0.01).

For ICA-SP the optimization of the objective func-
tion was achieved using the rank-1 method of the shifted
limited-memory variable metric algorithm [24] (breaking
conditions: maximum of 300 iterations, or 0.001 absolute
x-tolerance, or 0.001 relative objective function value).

The independent component analysis in ICA-SP uses
FastICA [25], first run in deflation mode. If this did
not result in a usable signal separation, the symmetric
mode was run with a maximum of 400 iterations and
the result was used regardless of the convergence of the
algorithm. The discrete wavelet transform used the cen-
tered Daubechies wavelet family of maximum phase with
five vanishing moments [26]. In addition to the sanity
checks applied to the LV segmentation, we added a cri-
terion based on the distance between gravity centers of
the obtained RV and LV regions. In consideration that
the heart of an adult human is approximately 90 mm
across in the short axis view, a segmentation was rejected
if this distance of the gravity centers was below 30 mm.
To account for the higher heart rate in stress studies we
added a fall-back check to estimate the independent com-
ponent (IC) corresponding to motion: If the detection of
a motion component from the IC mixing curves based on
the wavelet analysis failed we tested whether the mean
frequency of one of the curves was above 14 breaths per
minute.

The remaining registration parameters are given in
Table 2.

Table 2 Registration parameters

Method QUASI-P ICA-SP
Regularization weight «/scale 0.1/- 10/0.5
Knot spacing/scale 5/- 16/0.5
Multi-resolution-levels 3 3
Passes 1 <5

“Scale” refers to the value used to scale the according parameter with each new
registration pass.
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The results reported here were all obtained running the
motion compensation in a virtualized environment run-
ning an Ubuntu Linux 14.04 (i386) installation, and the
version 2.2.0 of MIA (for details see the Additional file 1:
Supplementary material).

As validation measures we compared automatically
obtained time-intensity curves to manually acquired
ones before and after registration. In all cases, the LV
myocardium was separated into 12 sections and the key
frame mask for the automatic time-intensity curve was
obtained from the image marked as constituting peak LV
enhancement, because in this image the myocardium can
be segmented quite accurately. In the statistical measures
one data point is defined by the patient, slice location,
study, and its myocardial section observed.

Experiment 1 - compensation of free breathing
motion

In the first experiment, motion compensation for the rest
and stress studies of nine patients was run. For 16 of the
54 considered slice series the segmentation of the region
of interest around the left ventricle was rejected when
running ICA-SP. For these slices the motion compensa-
tion had to be run on the full image resolution. For two
slices (patient 7, middle, basal) the ICs corresponding to
motion could only be identified based on the mean fre-
quency of their mixing curves. However, in these cases the
mean frequency for RV enhancement mixing curve was
also very close to the chosen threshold, indicating that
this approach — here only used as fallback — may not be
reliable. Still, motion compensation by applying ICA-SP
could be achieved for all series. QUASI-P, on the other
hand, failed for one series (patient 7, stress, basal), but was
applied successfully for the remaining data.

The obtained validation measures are summarized in
Tables 3 and 4. For completeness we not only report the
summary results for QUASI-P including all series, but
also the results obtained when ignoring the failed series
(dubbed QUASI-P* in the tables).

In all cases (rest, stress, summary) ICA-SP provided bet-
ter results with respect to the normalized mean square
error (NMSE) (Table 3). When considering only the rest
studies and the summary statistics this also holds for Pear-
sons correlation coefficient R? (Table 4). For the stress
studies, QUASI-P and ICA-SP provide equal mean val-
ues when only the slices are taken into account for which
motion compensation was successfully executed. These
findings confirm that on average ICA-SP performs better
than QUASI-P as reported in [20].

Experiment 2 - no motion

When running the two motion compensation algorithms
for a data set that does not exhibit motion to begin with,
then ICA-SP is a clear winner over QUASI-P as can
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Table 3 NMSE before and after registration (smaller is
better)

All studies
Mean Variation Median Min Max

Unregistered 0.66 0.56 0.51 0.04 421
QUASI-P 0.81 1.82 041 0.04 16.76
QUASI-P* 0.61 0.68 0.40 0.04 6.81
ICA-SP 0.52 0.53 0.35 0.04 4.40

Rest studies
Unregistered 0.67 0.59 052 0.04 4.21
QUASI-P 0.60 0.63 0.40 0.04 4.57
ICA-SP 048 0.51 033 0.04 4.35

Stress studies

Unregistered 0.66 0.54 0.49 0.06 3.86
QUASI-P 1.02 247 042 0.05 16.76
QUASI-P* 0.62 0.71 0.40 0.05 6.81
ICA-SP 0.56 0.55 0.38 0.05 440

Both algorithms result in a significant improvement of the measures, and as with
R? ICA-SP providing the better motion compensation according to the obtained
measurements.

be seen from the resulting validation measures given in
Table 5.

ICA-SP introduces some small errors, because the algo-
rithm is designed to run at least one registration pass, even
if no motion is detected.

Table 4 Pearsons correlation coefficients before and after
registration (larger is better)

All studies
Mean Variation Median Min Max
Unregistered 0.82 0.20 0.89 -0.09 1.00
QUASI-P 0.90 0.16 0.95 0.00 1.00
QUASI-P* 0.91 0.12 0.95 013 1.00
ICA-SP 0.92 0.13 0.97 0.17 1.00
Rest studies
Unregistered 0.81 0.18 0.88 0.15 0.99
QUASI-P 0.90 0.13 0.95 013 1.00
ICA-SP 0.93 0.11 0.97 033 1.00
Stress studies
Unregistered 0.82 0.22 091 -0.09 1.00
QUASI-P 0.90 0.19 0.96 0.00 1.00
QUASI-P* 0.92 0.11 0.96 0.15 1.00
ICA-SP 0.92 0.15 0.97 0.17 1.00

Both algorithms result in a significant improvement of the measures with ICA-SP
providing the better motion compensation than QUASI-P according to the
obtained average value of R2.
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Table 5 Validation measures before and after registration
of the motion free series

R2

Mean Variation Median Min Max
Unregistered 1.00 0.00 1.00 1.00 1.00
QUASI-P 0.50 032 0.63 0.00 0.87
ICA-SP 0.94 0.09 0.99 0.66 1.00

NMSE

Unregistered 0.00 0.00 0.00 0.00 0.00
QUASI-P 2.21 1.94 137 0.20 6.85
ICA-SP 0.13 0.11 0.11 0.01 0.46

While ICA-SP mostly preserves the data, the application of QUASI-P brings the
original alignment to naught.

QUASI-P on the other hand relies on detecting a sub-
set of images that is already well aligned, but doesn’t set
a maximum temporal distance between images that are
added to the sub-set. Consequently, only very few images
are added to this subset, and in its extreme, for the apical
slice the estimated pre-aligned subset only consists of the
first and the last image of the series. As already reported
in [13] the linear interpolation used to create synthetic
images for the second registration step is hardly able to
model the fast intensity change at the beginning of the
series. Here this problem is moved to a new level: Since
very few images are included in the pre-aligned subset
they simply do not form a sufficient base to model the
intensity change of the whole series.

Discussion

We presented free breathing acquired myocardial perfu-
sion data sets from 10 patients evaluated to have a stress
perfusion defect based on cardiac MR myocardial perfu-
sion imaging. By applying algorithms published elsewhere
we showed how this data can be used to analyze and
validate breathing motion compensation methods. Specif-
ically, we were able to confirm earlier findings, that is,
ICA-SP performs better then QUASI-P when applied to
free breathing acquired perfusion data with respect to the
time-intensity curve based validation measures R? and
normalized mean square error (NMSE). We were also able
to show that ICA-SP is stable considering the preservation
of data if no motion is present in a series.

By providing not only the data, but also a full instal-
lation of the test bed used to run the experiments as a
virtual machine we enable third parties to easily replicate
the experiments, to extend the method, and also to run
the experiments on their own data. By managing the data
and the manual segmentations used for the validation in
a public version control system (i.e. Git) it is easy to add
new data, and to update and refine segmentations with
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a proper audit route. We encourage researchers to add
their own annotations to the data set, either to provide
the possibility to add inter-observer comparisons of seg-
mentations to the presented analysis, or to make the use
of the data in other applications possible, for instance, for
the validation of segmentation algorithms.

Methods

Two methods [13,20] are applied to the data to demon-
strate its usefulness for the rating and validation of motion
compensation algorithms. For both methods software
implementations have been made publicly available [23].
For completeness, we give a short description of both
algorithms and the validation approach used in this paper.

Motion compensation exploiting quasi-periodicity of free
breathing (QUASI-P)

The algorithm presented in [13] consists of three steps:
Firstly, by using normalized gradients fields (NGF) based
image similarity measure [27], a global reference image
and a subset of images that belong to the same breathing
phase are obtained. These images are then non-linearly
registered by optimizing NGF. In the second registration
step, synthetic reference images are created from the now
registered subset that exhibit similar intensity distribu-
tions like the original, still unregistered images, but are
(ideally) free of motion. Finally, the unregistered images
are non-linearly registered to their synthetic reference
counterparts by optimizing the sum of squared differences
(SSD).

Motion compensation with an ICA-Wavelet based
classification (ICA-SP)

The method presented in [20] is based on an independent
component analysis (ICA) of the perfusion series as pro-
posed in [16]. First, an ICA is run on the image series to
obtain feature images — the ICs — and a feature mixing
matrix. By using a wavelet analysis of this feature mix-
ing matrix, key components of the perfusion series such
as motion, and possibly RV and LV enhancement curves
are identified. The motion compensation is then achieved
by creating synthetic reference images by recombining all
ICs but the component identified as motion. This results
in a series of reference images that is free of motion but
exhibits an intensity profile similar to the original series
which makes the application of SSD possible for the fol-
lowing non-linear registration step, where the original
images are registered to their synthetic reference counter-
parts. Since the reference images are quite blurry initially,
a multi-pass scheme is applied to achieve full motion
compensation. Note, that with this scheme, the rest posi-
tion is the mean of the breathing movement range, and
hence, usually all images of the series are altered by the
registration.
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If properly identified, the RV and LV IC images can
be used to segment the RV and LV cavities, and conse-
quently a region of interest around the LV myocardium
can be identified and can then be used to limit motion
compensation to that region, thereby also speeding up
the calculations. If only non-linear registration is to be
applied, this segmentation step is not required.

In order to make result of the LV segmentation more
reliable as compared to [20], the segmentation is rejected
if the distance between the geometric centers of the esti-
mated RV and LV masks is smaller than a preset value.
If the segmentation is rejected the non-linear registration
based motion compensation is applied to the full image
domain.

Another enhancement to the work presented in [20] is
attributed to the identification of ICs presenting motion.
In [20] we rely on the observation that the resting heart
rate is approximately 75 beats per minute, and the rest
breathing rate is about 12 breaths per minute [28]. Since
the perfusion imaging is triggered at heart beats, this
results in one breathing cycle covering approximately six
frames in the time series. However, in stress studies the
heart rate is considerably higher and the breathing rate
doesn’t necessarily increases proportionally. Hence, in
stress studies one breathing cycle may stretch over more
heart beats and consequently cover more frames in the
image series which results in a failure of the wavelet based
labeling method described in [20] to identify ICs that
present motion. Since the original image data provides
the acquisition times for each frame, ICs corresponding
to motion can be identified by thresholding based on the
mean frequency of the IC mixing curves representing the
breathing rate relative to the heart beat rate. This method
of motion identification will only be used as a fallback,
when the identification by using the wavelet based method
fails.

Validation

We base the validation solely on the time-intensity curves
of the sections of the myocardium that are extracted
from the segmentations provided with the given data sets.
Given the segmentation of the myocardium obtained from
the outlined endo- and epicardium, the LV center point
LV, and the ray passing from this center point to the
marked RV insertion point RVjp, the myocardium is sep-
arated into 12 sections by clock-wise rotating this ray
LV RV, with equal angular increments of 30 degree. The
result of this separation is equivalent to the separation of
six sections shown in Figure 2.

The time-intensity curves are (1) evaluated directly
from the segmented data Kg (Ground Truth), and by
propagating the myocardial section masks obtained from
the chosen key frame, (2) over the original image series
Korg, and (3) over the image series that was corrected for
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motion Kyeg. In the second case, the section mask of the
key frame is used unaltered. In the third case, the section
mask is adjusted to the registered key frame accord-
ing to the transformation that was obtained for motion
compensation. Note, that in this case a failed motion com-
pensation may result in a transformed mask that doesn’t
contain any pixel for one or more sections. To quantify the
registration quality, we evaluate Pearsons correlation coef-
ficient R? and the NMSE between the manually obtained
time intensity curves Ky and the pre-and post registra-
tion curves Korg, and Kieg respectively. Better registration
is indicated by a higher correlation R? and a lower NMSE.
If one of the transformed section masks did not contain
any pixel, the correlation R? was set to zero to indicate the
failure in motion compensation.

Note, that the clinical relevant quantification of the
myocardial blood flow (MBF) could also be used as an
additional validation measure. However, on one hand, the
result of such a quantification is dependent on the used
quantification model (e.g. [29,30]), and on the other hand
the presented data is not corrected for intensity inhomo-
geneities, and the motion compensation methods used
here do not include such correction. Consequently, using
MBF would add an additional layer of evaluations that
in itself need validation. Therefore, and since this paper
focuses on the presentation of the data and the motion
compensation methods are included mostly to illustrate
the utility of the data, we refrained from adding MBF as
validation measure.

Availability of supporting data

A static snapshot of the data is provided in the Giga-
Science data base [31]. The data distribution also includes
all the scripts required to run these experiments. In addi-
tion, a full installation of the test bed is provided as
a virtual hard disk based on a minimal installation of
Ubuntu Linux 14.04 (i386). For a detailed description of
the data layout and to clarify the licenses of different soft-
ware in the virtual machine the reader is referred to the
Additional file 1: Supplementary material.

In addition, to allow updates and additions to the anno-
tations, the data and scripts are also made available
in a public Git repository at https://sourceforge.net/p/
tabseg/myoperfdata/ci/master/tree/, in conjunction with
a Android based segmentation software [22].

Additional file

Additional file 1: Supplementary material.
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