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Abstract

Background: We present the Biological Observation Matrix (BIOM, pronounced “biome”) format: a JSON-based file
format for representing arbitrary observation by sample contingency tables with associated sample and observation
metadata. As the number of categories of comparative omics data types (collectively, the “ome-ome”) grows
rapidly, a general format to represent and archive this data will facilitate the interoperability of existing
bioinformatics tools and future meta-analyses.

Findings: The BIOM file format is supported by an independent open-source software project (the biom-format
project), which initially contains Python objects that support the use and manipulation of BIOM data in Python
programs, and is intended to be an open development effort where developers can submit implementations of
these objects in other programming languages.

Conclusions: The BIOM file format and the biom-format project are steps toward reducing the “bioinformatics
bottleneck” that is currently being experienced in diverse areas of biological sciences, and will help us move toward
the next phase of comparative omics where basic science is translated into clinical and environmental applications.
The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard
by the Genomic Standards Consortium.
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Background
Advances in DNA sequencing have led to exponential
increases in the quantity of data available for “comparative
omics” analyses, including metagenomics (e.g., [1,2]), com-
parative genomics (e.g., [3]), metatranscriptomics (e.g.,
[4,5]), and marker-gene-based community surveys (e.g.,
[6,7]). With the introduction of a new generation of
"benchtop sequencers" [8], accessible to small research,
clinical, and educational laboratories, sequence-based com-
parative omic studies will continue to increase in scale. The
rate-limiting step in many areas of comparative omics is no
longer obtaining data, but analyzing that data (the
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“bioinformatics bottleneck”) [9,10]. One mechanism that
will help reduce this “bioinformatics bottleneck” is
standardization of common file formats to facilitate sharing
and archiving of data [11].
As with the increasing prevalence of high-throughput

technologies in the biological sciences, the categories of
comparative omics data, which we collectively term the
“ome-ome”, are rapidly increasing in number (Figure 1).
Researchers are relying on more types of omics data to in-
vestigate biological systems, and the coming years will bring
increased integration of different types of comparative
omics data [2,12]. A common data format will facilitate the
sharing and publication of comparative omics data and
associated metadata and improve the interoperability of
comparative omics software. Further, it will enable rapid
advances in omics fields by allowing researchers to focus
on data analysis instead of on formatting data for transfer
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:gregcaporaso@gmail.com


Figure 1 Growth of the “ome-ome”, or the types of “omic”
data, over time based on mentions in Medline abstracts. Chao1
analysis indicates that there may be over 3,000 “omes”: however,
given the well-known limitations of such non-parametric
extrapolation techniques, we can only wonder how many “omes”
remain to be discovered as technological advances usher in a new
era of “ome-omics”.
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between different software packages or reimplementing
existing analysis workflows to support their specific data
types.
Despite the different types of data involved in the vari-

ous comparative omics techniques (e.g., metabolomics,
proteomics, or microarray-based transcriptome ana-
lyses), they all share an underlying, core data type: the
“sample by observation contingency table”, or the matrix
of abundances of observations on a per-sample basis. In
marker gene surveys, this table contains counts of OTUs
(Operational Taxonomic Units) or taxa on a per-sample
basis; in metagenome analyses, counts of orthologous
groups of genes, taxa, or enzymatic activities on a per-
metagenome basis; in comparative genomics, counts of
genes or orthologous groups on a per-genome basis; and
in metabolomics, counts of metabolites on a per-sample
basis. Many tools have been developed to analyze these
contingency tables, but they are generally focused on a
specific type of study (e.g., QIIME for marker gene ana-
lysis [13], MG-RAST for metagenome analysis [14],
VAMPS for taxonomic analysis [15]). However, many
techniques are applicable across data types, for example
rarefaction analyses (i.e., collector curves). These are fre-
quently applied in microbiome studies to compare how
the rate of incorporation of additional sequence observa-
tions affects the rate at which new OTUs are observed.
This allows us to determine whether an environment is
approaching the point of being fully sampled (e.g., [13]).
Rarefaction curves could similarly be applied in com-
parative genomics to study the rate of discovery of new
gene families, as done in [16]; a researcher could com-
pile a contingency table of genomes (samples) by genes
(observations) and use a rarefaction curve to determine
how quickly new gene families were accumulating as
new genome sequences are added. A standard format
for biological sample by observation contingency tables
will support the use of bioinformatics pipelines for dif-
ferent data types than those they were initially designed
for (e.g., QIIME could be applied to generate rarefaction
curves for proteomic data, or MG-RAST could output
metatranscriptome tables). Adoption of this standard
will additionally facilitate the adoption of future analysis
pipelines, as users can then directly apply those pipelines
to their existing data.
In many existing software packages (e.g., [13,14]), contin-

gency tables are represented as tab-separated text, but
minor syntactic differences prevent easy exchange of data
between tools. For example, differing representation of
samples and observations as either rows or columns, and
the mechanism for incorporating sample or observation
metadata (if possible at all), cause the formats used by dif-
ferent software packages to be incompatible. Additionally,
in many of these applications a majority of the values
(frequently greater than 90 %) in the contingency table are
zero, which is taken to mean that the corresponding “obser-
vation” was not observed in the corresponding sample. The
fraction of the table that has non-zero values is defined as
the "density", and thus a matrix with a low number of non-
zero values is said to have a low density. As data sets con-
tinue to increase in size, “dense” representations of these
tables, where all values are represented (in contrast to
“sparse” representations, where only non-zero values are
represented), result in an increasingly inefficient use of disk
space. For example, marker gene survey OTU tables with
many samples (such as the one presented in Additional file
1: Table S1 containing 6,164 samples and 7,082 OTUs) can
have as few as 1 % non-zero values. As the collection of
samples becomes more diverse, these tables become even
sparser and their size (both on disk and in memory)
becomes a considerable barrier to performing meta-
analyses.
Sample and observation metadata are essential for the

interpretation of omics data, and for facilitating future
meta-analyses. Two projects have recently arisen to
address the need for metadata standards: MIxS [17],
which defines what metadata should be stored for
diverse sequence types, and ISA-TAB [11], which defines
a file format for storing that metadata. A standard file
format for representing sample by observation contin-
gency tables could compliment these existing standards
by providing a means for associating MIxS-compliant
metadata provided in ISA-TAB format with samples and
observations.
The Biological Observation Matrix (BIOM, pronounced

“biome”) file format has been developed with input from
the QIIME, MG-RAST, and VAMPS development groups.
The BIOM file format is based on JSON [18], an open
standard for data exchange. The primary objectives of the
BIOM file format are presented in Additional file 2. In
addition to consolidating data and metadata in a single,



Figure 2 Size of sparse BIOM formatted file versus size of
QIIME “classic” OTU Table formatted file, for 60 independent
microbiome studies currently stored in the QIIME database at
http://www.microbio.me/qiime.
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standard file format, the BIOM file format supports sparse
and dense matrix representations to efficiently store these
data on disk. The OTU table with 6,164 samples and 7,082
OTUs mentioned above contains approximately 1 % non-
zero values. Because zero-values are not included in the
sparse BIOM-formatted file, representing the same infor-
mation in this format requires 14 times less space than with
a tab-separated text file (Supplementary File 1). As a sparse
matrix increases in size or decreases in density (e.g., in an
Illumina sequencing run versus a 454 sequencing run), this
difference in file size will further increase.
To support the use of the BIOM file format, the for-

mat specifications and an open-source software package,
biom-format, are available at http://biom-format.org.
Included with the format specification is a format valida-
tor, and included in the software package is a script to
easily convert BIOM files to tab-separated text represen-
tations (which can be useful when working with spread-
sheet programs) and Python objects to support working
with this data. Additional file 3 presents a comparison of
QIIME software for processing a contingency matrix as
a 2D array (derived from QIIME 1.4.0) versus using the
biom-format objects (derived from QIIME 1.4.0-dev).
The biom-format software package will additionally
serve as a repository where other developers can submit
implementations of these objects in other languages.

Data description
To compare the relative size of storing sample by observa-
tion contingency tables in sparse BIOM-formatted files
versus tab-separated files, we extracted 60 QIIME OTU
tables from the QIIME database. Each observation (OTU)
in these tables contains a single metadata entry correspond-
ing to the taxonomy assigned to the OTU, and the tab-
separated files were formatted in “Classic QIIME OTU
table” format (i.e., the format generated by QIIME 1.4.0
and earlier). Example files in both BIOM format and classic
QIIME OTU table format are available in Additional file 4:
Data 1.

Analyses
The OTU tables selected for this study ranged in size from
6 samples by 478 OTUs (BIOM size: 0.10 MB; classic
QIIME OTU table size: 0.06 MB) up to 6,164 samples by
7,082 OTUs (BIOM size: 12.24 MB; classic QIIME OTU
table size: 175.76 MB). In the latter case, at approximately
1 % density there are 100-fold fewer counts in the sparse
OTU table, but the file size is only 10-fold (rather than
100-fold) smaller for BIOM-formatted versus tab-separated
text. This discrepancy arises because the matrix positions
must be stored with the counts in the sparse representation
(as row number, column number, value; see Additional file
5) but are implied in tab-separated text. The file compres-
sion ratio (tab-separated text file size divided by BIOM file
size) that is achieved when representing contingency tables
in sparse versus dense formats is therefore a function of the
density of the contingency table. In the data presented in
Figure 2, the density ranges from 1.3 % non-zero values to
49.8 % non-zero values, with a median of 11.1 %. The file
compression ratio increases with decreasing contingency
table density for this data set (compression ratio =0.2×
density-0.8; R2= 0.9; Additional file 6: Figure S1).
At small file sizes, tab-separated text files represent

OTU tables more efficiently than BIOM-formatted files,
but starting at approximately 0.2 MB the sparse BIOM
representation becomes more efficient (Figure 2). This
extra overhead incurred with the sparse representation
is negligible (on the order of kilobytes) in cases where
the dense representation is more efficient. As contin-
gency table density increases, as may be the case with
certain types of comparative omics data, users can for-
mat their files in dense BIOM format to avoid inefficien-
cies with sparse representations. We find that dense
representations become more efficient than sparse repre-
sentations at a density of around 15 % (Additional file 6:
Figure S1, Additional file 1: Table S1).
In general, a simple tab-separated format will be slightly

more efficient for storage than the dense BIOM file format,
but will not provide a standard way to store sample and ob-
servation metadata or provide interoperability across com-
parative omics software packages; thus, the BIOM file
format will still be advantageous. Similarly, compressing
tab-separated text files representing sample by observation
contingency tables (e.g., with gzip) can result in a similar
degree of compression as converting a dense matrix

http://biom-format.org
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representation to a sparse representation, but would not
provide the additional benefits of the BIOM file format.

Discussion
The biom-format software package has been designed
with three main objectives: to be a central repository for
objects that support BIOM-formatted data in different
programming languages, to have minimal external de-
pendencies, and to provide an efficient means for repre-
senting biological contingency tables in memory along
with convenient functionality for operating on those
tables. At present we provide Python 2 (2.6 or greater)
objects in both dense and sparse representations to allow
for efficient storage across a range of densities of the
underlying contingency table data. Our goal is to make
the biom-format project an open development effort so
that other groups can provide objects implemented in dif-
ferent programming languages (ideally with APIs as simi-
lar as possible to the Python API).
Managing a community development effort is a chal-

lenge. To address this, we will maintain a code repository
on GitHub [19] which is currently used for managing many
successful collaborative software projects such as IPython,
homebrew, and rails. The core BIOM development group
will review new additions (in the form of pull requests) and,
when they are fully documented and tested, will merge
them into the biom-format repository.
A challenge in achieving community adoption of a new

standard is convincing users and developers to overcome
the learning curve associated with it. To address this, we
have fully documented the BIOM file format standard, as
well as the motivations for it, on the BIOM format website
(http://biom-format.org). The biom-format software
project contains a conversion script that allows users to
easily move between BIOM-formatted files and tab-sepa-
rated text files. This allows users to interact with their data
in ways they traditionally have (e.g., in a spreadsheet pro-
gram). To reduce the barrier-to-entry for using the biom-
format software, the Python objects in the biom-
format package are designed to be easily installable on
any system running Python 2.6 or 2.7. To achieve this,
biom-format relies only on the Python Standard
Library and NumPy (a common dependency for scientific
Python applications which is installed by default on Mac
OS X and many versions of Linux).
The introduction and refinement of high-throughput se-

quencing technology is causing a large increase in both the
number of samples and the number of observations
involved in comparative omic studies (e.g., [6,20]), and
sparse contingency tables are therefore becoming central
data types in these studies. For example, it is not uncom-
mon to find hundreds of thousands of OTUs in modern
microbial ecology studies (unpublished observation based
on preliminary analysis of the initial Earth Microbiome
Project [20] dataset). Whether these observations represent
new biological findings or sequencing error is a contested
topic [21-23], but certain poorly characterized environ-
ments are hypothesized to contain large reservoirs of yet
unknown OTUs [24]. We expect both the number of sam-
ples and the number of observations involved in compara-
tive omic studies to continue to grow over the coming
years, and an efficient representation of this data that can
be easily interrogated across different bioinformatics pipe-
lines will be essential to reducing the bioinformatics bottle-
neck. Similarly, integrating metadata in BIOM formatted
files, ideally based on standards such as MIxS and ISA-
TAB, will facilitate meta-analysis across different data types.
The number of categories of comparative omic data (e.g.,

genomic, metabolomic, pharmacogenomic, metagenomic)
is increasing rapidly, and the need to develop software tools
specific to each of these data types contributes to the bio-
informatics bottleneck. The BIOM file format provides a
standard representation of the “sample by observation con-
tingency table”, a central data type in broad areas of com-
parative omics, providing the means to generally apply
tools initially designed for analysis of specific “omes” to di-
verse “omic” data types. The BIOM file format is currently
recognized as an Earth Microbiome Project Standard and a
Candidate Standard by the Genomics Standards
Consortium, and is being adopted by groups developing
comparative omics analysis software. We can embrace the
proliferation of omics techniques by using standards such
as the BIOM file format to reduce the gap in availability of
bioinformatics tools for new domains of omics research.
Taken together, these advances are an additional step to-
ward the next phase of comparative omics analysis, in
which fundamental scientific findings will increasingly be
translated into clinical or environmental applications.

Methods
Growth of the ome-ome
In order to evaluate the growth of the “ome-ome” over time
we searched a local installation of MEDLINE abstracts
(through 2010) and tabulated the number of distinct terms
ending in “ome” or “omes” on an annual basis. A list of
false positive terms was compiled from the Mac OS×
10.7.4 built-in dictionary, and an initial pass over MED-
LINE to identify irrelevant terms ending in ome that are
not part of the standard English lexicon (e.g., “trifluorome”,
“cytochrome”, “ribosome”). While some false positives are
still present, the number of unique “ome” terms being
referenced in the biomedical literature is growing rapidly.

BIOM file format
The BIOM file format version 1.0.0 is based on JSON,
an open standard for data exchange for which native
parsers in several programming languages are available.
JSON was chosen as the basis for the BIOM format as it

http://biom-format.org
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is a widely accepted and lightweight transmission format
used on the Internet since 1999. It is directly translatable
into XML if necessary, but embodies less complexity
and overhead (in terms of the amount of supporting in-
formation that must be included in a valid file).
Several representative BIOM-formatted files and classic

QIIME OTU table files used in the analysis presented in
Figure 2, Additional file 1: Table S1, and Additional file 6:
Figure S1 are provided in a zip file as Additional file 4: Data
1. A full definition of the BIOM format is available at
http://biom-format.org.
The BIOM project consists of two independent compo-

nents. The first component is the BIOM file format specifi-
cation, which is versioned and available at http://biom-
format.org. A BIOM validator script is additionally
packaged with the format specification, and allows users to
determine if their files are in valid BIOM format. The sec-
ond component of the BIOM format project is the biom-
format software package, which contains general-purpose
tools for interacting with BIOM formatted files (e.g., the
convert_biom.py script, which allows for conversion be-
tween sparse and dense BIOM-formatted files, and for con-
version between BIOM-formatted files and tab-separated
text files), an implementation of support objects for BIOM
data in Python, and unit tests for all software. We hope that
the development of similar support objects in other pro-
gramming languages will become a community effort,
which we will manage using the GitHub environment.
Availability of software
The biom-format project is hosted on GitHub and avail-
able at http://www.biom-format.org. The project page can
be found at http://github.com/biom-format. biom-
format is platform independent, and requires Python
2.6 or 2.7. It is available under GPL v3, and is free for all
use. Version 1.0.0 of the biom-format project is avail-
able as Supplementary File 2, and available for download
on the project page at: https://github.com/downloads/
biom-format/biom-format/biom-format-1.0.0.tgz.
Note from the Editors
A related discussion by Jonathan Eisen on the issues sur-
rounding this work is published alongside this article [25].
Additional files

Additional file 1: Table S1. OTU table statistics for data included in
Figure 2, Additional File 6: Figure S1, and Additional File 7: Data 2.

Additional file 2: Initial goals of the biom-format project.

Additional file 3: Comparison of QIIME OTU Table collapsing code with
native QIIME OTU table data structures (Panels A-D) and biom-format
Table objects (Panel E). Panels A-D (combined) provide the same
functionality as Panel E.
Additional file 4: Data 1. Representative OTU tables in BIOM and
classic QIIME OTU table format.

Additional file 5: Example BIOM-formatted data. This is an example of a
sparse BIOM-formatted OTU table. While type is a required entry in BIOM
tables, the BIOM format itself does not change for different data types
(e.g., OTU Table, function table, metabolite table). This information is
included to allow tools that use BIOM files to determine the data type, if
desired. Additional examples are available at: http://biom-format.org/
documentation/format_versions/biom-1.0.html#example-biom-files.

Additional file 6: Figure S1. Matrix density versions compression ratio.

Additional file 7: Data 2. Version 1.0.0 of the biom-format software
package.
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