
Cao et al. GigaScience  (2016) 5:32 
DOI 10.1186/s13742-016-0137-2

TECHNICAL NOTE Open Access

Streaming algorithms for identification of
pathogens and antibiotic resistance potential
from real-time MinIONTM sequencing
Minh Duc Cao1†, Devika Ganesamoorthy1†, Alysha G. Elliott1, Huihui Zhang1, Matthew A. Cooper1

and Lachlan J.M. Coin1,2*

Abstract

The recently introduced Oxford Nanopore MinION platform generates DNA sequence data in real-time. This has great
potential to shorten the sample-to-results time and is likely to have benefits such as rapid diagnosis of bacterial
infection and identification of drug resistance. However, there are few tools available for streaming analysis of
real-time sequencing data. Here, we present a framework for streaming analysis of MinION real-time sequence data,
together with probabilistic streaming algorithms for species typing, strain typing and antibiotic resistance profile
identification. Using four culture isolate samples, as well as a mixed-species sample, we demonstrate that bacterial
species and strain information can be obtained within 30 min of sequencing and using about 500 reads, initial
drug-resistance profiles within two hours, and complete resistance profiles within 10 h. While strain identification with
multi-locus sequence typing required more than 15x coverage to generate confident assignments, our novel
gene-presence typing could detect the presence of a known strain with 0.5x coverage. We also show that our pipeline
can process over 100 times more data than the current throughput of the MinION on a desktop computer.
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Background
Massively parallel, short-read sequencing has profoundly
transformed genomics research [1, 2] and has become
the dominant technology for sequencing DNA. However,
one inherent limitation of most current technologies is
that the sequencing run must finish before data analysis
can begin. As a result, sequence analysis algorithms have
been designed to make inference on a complete sequenc-
ing data set. In contrast, streaming algorithms are applied
to a sequence of data events and typically maintain an
internal summary of the data, as well as an approximation
of the full inference, without needing to store all of the
observations [3]. Streaming algorithms have applications
in particle and solar physics, computer network analysis
and finance [4].
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Oxford Nanopore Technologies has recently released
a portable MinION sequencing device, which utilises
nanopore sequencing technology originally proposed in
the 1990s [5]. The key innovation of this device is that it
measures changes in electrical current as single-stranded
DNA passes through the nanopore and uses the signal
to determine the nucleotide sequence of the DNA strand
[6, 7]. These sequence data can be retrieved and anal-
ysed as they are generated, providing the opportunity to
obtain answers in the shortest possible time. Real-time
sequencing has many potential applications, especially in
time-critical areas such as rapid clinical diagnosis.
In order to realise this potential there is a need to

develop streaming bioinformatics algorithms that contin-
ually update and report results as each sequence read is
generated. To be of practical use – for example to know
when to make a diagnosis in the clinic – these algo-
rithmsmust continuously update not only a point estimate
(e.g., which species are present and their proportions), but
also confidence intervals in that estimate. Several systems
incorporating real-time analysis of MinION data have
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been developed recently, such as the cloud-based platform
Metrichor (Oxford Nanopore), work by Quick et al. [8]
and MetaPORE [9], which place the sample on a phylo-
genetic tree but without estimating the confidence in this
assignment.
Here we present a flexible framework for the real-

time analysis of MinION sequence data directly as it is
sequenced and base-called. The framework can incor-
porate multiple real-time analyses to suit the problems
at hand and can be deployed on a single computer or
on a high-performance computing facility and comput-
ing cloud. We also present four streaming algorithms for
the identification and characterisation of pathogen sam-
ples. These algorithms, which are seamlessly integrated
into the pipeline, report analysis results along with their
confidence levels so that users can decide when to stop a
sequencing run.
By sequencing four bacterial isolate samples and a mix-

ture sample on the MinION sequencer, we demonstrate
that we can reliably determine the species and strain of a
sequenced sample with only 500 reads. This was achieved
in less than half an hour of sequencing with the current
throughput of the MinION. Furthermore, we show that
we can identify most of the drug resistance genes present
in a sample within 2 h of sequencing, and the full drug
resistance profile within 10 h. The pipeline can perform
all these analyses on a single computer at a through-
put of over 100 times higher than our best runs. As
the throughput of nanopore sequencing is expected to
increase, the time to obtain these results will be signifi-
cantly shortened. Our findings support the potential use
of MinION sequencing for the real-time analysis of clini-
cal samples for species detection and analysis of antibiotic
resistance.

Results and discussion
Real-time analysis framework
Our real-time analysis framework consists of several of
streaming programs communicating to each other via the
network sockets or inter-process communication pipes
provided by Unix-like operating systems. These programs
typically take a sequence of items as input and process
them every time a given small number of items arrive.
They either retain only the relevant statistics of the data,
or upon processing any data items, immediately for-
ward only the necessary information to the downstream
programs for further processing. This data processing
methodology requires only a small memory footprint and
hence is relevant for processing large amounts of data,
especially real-time data fromMinION sequencing.
We developed a number of auxiliary programs to facil-

itate setting up a real-time pipeline to analyse MinION
sequencing data. These include scripts for setting up com-
munication channels in a pipeline, thereby allowing the

pipeline to be deployed on a high-performance computing
cluster to scale with massive amounts of data. Programs
for simple analyses of MinION sequencing data such as
initial analysis (npReader [10]) and read-filtering on the
basis of read length and read quality are also provided.
We also developed streaming algorithms for a handful

of identification problems, namely species typing, strain
typing and identification of antibiotic resistance profiles
(see Methods). We integrated the implementations of
these algorithms into the analysis pipeline (see Fig. 1).
In this pipeline, npReader [10] continuously scans the
folder containing sequencing data in parallel with Min-
ION sequencing. It picks up sequenced reads as soon as
they are generated (from Metrichor), and simultaneously
streams them through the pipeline for identification anal-
yses. The pipeline also makes use of off-the-shelf bioinfor-
matics tools such as BWA-MEM [11], as described later.
In each step of this pipeline, data are piped from one pro-
cess to the next without being written to disk, with the
exception of base-calling viaMetrichor in which each read
is written to disk once it has been base-called, and is then
picked up almost immediately by npReader.
We evaluated our real-time analysis pipeline and the

accuracy of our algorithms using five MinION sequenc-
ing data sets. Four of these data sets were collected before
the pipeline was developed, and hence we emulated the
timing of the sequencing for the evaluation from these
data sets. Specifically, we extracted the time that each
read was sequenced, and streamed the sequence reads in
the exact order and timing into the pipeline. With the
emulation, we were able to stream the sequencing data
at a hypothetical throughput 120 times higher than that
we obtained with the MinION. This allowed us to test
the scalability of the pipeline against the projected future
throughput such as from the PromethION platform. The
fifth data set was passed through our pipeline as it was
base-called from Metrichor, and thus represents a true
demonstration of the real-time capability of the pipeline.
Finally, we validated the analysis results by sequencing
these samples with the Illumina MiSeq platform, which
has well-established bioinformatics analysis methods.

Data generation
We prepared samples from cultured isolates of two Kleb-
siella pneumoniae strains ATCC BAA-2146, ATCC 13883;
one Klebsiella quasipneumoniae strain ATCC 700603
and a library mixture sample. This mixture sample con-
tained two different sequencing libraries prepared from
the Escherichia coli strain ATCC 25922 and the Staphy-
lococcus aureus strain ATCC 25923, pooled at different
levels prior to sequencing (Table 1). We sequenced sam-
ple ATCC BAA-2146 and ATCC 700603 with theMinION
using chemistry R7 and the others using the improved
chemistry R7.3 (see Methods).
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Fig. 1 Schematic of the real-time analysis pipeline. Once the MinION starts sequencing, DNA fragments are sequenced (on the MinION) and
base-called (by Metrichor cloud) instantaneously, and are simultaneously streamed through the pipeline where they are aligned by BWA-MEM [11].
Arrows show the data flow

To validate the analysis results from MinION sequenc-
ing, we sequenced all aforementioned isolates with
the established Illumina platform MiSeq to a coverage
exceeding 100-fold. Isolates in the mixture sample were
sequenced separately. We assembled the MiSeq sequenc-
ing reads to obtain high quality assemblies of the five
strains. With the assemblies, we were able to identify
the sequence types and the antibiotic resistance profiles
of these strains (see Methods). These results were used
as the benchmarks to validate the analysis of MinION
sequencing data.

Sequencing yields and quality of MinION sequencing
Sequence reads from the MinION were classified into
three types: template, complement and higher quality 2D
reads (i.e., reads resulted from computationally merging

a template and a complement read). The average Phred
quality of template and complement reads across four
runs was in the region of 5, while 2D reads were in higher
quality, with average Phred quality about 9 (see Table 2
and Additional file 1: Figure S1). The median read lengths
of three K. pneumoniae samples were approximately 5 Kb,
while the mixture sample was only less than 1 Kb. We
observed variation in terms of sequence yields across the
four runs. While we obtained about 36 000 reads (185
Mb) for sample K. pneumoniae ATCC BAA-2146 after
60 h of sequencing, the run for sample K. quasipneu-
moniae ATCC 700603 yielded only 7092 reads (39 Mb)
with the same running time (Fig. 2). We sequenced sam-
ple K. pneumoniae ATCC 13883 and the mixture sample
for 36 and 20 h respectively, both with the chemistry 7.3,
but the yields were markedly different. The read length

Table 1 Details of the four samples

Sample Species Strain Information Proportion

Single sample 1 K. pneumoniae ATCC BAA-2146 NDM-1 positive resistant 100 %

Single sample 2 K. quasipneumoniae ATCC 700603 K6, ESBL 100 %

Single sample 3 K. pneumoniae ATCC 13883 Type strain 100 %

Mixture sample E. coli ATCC 25922 Seattle 1946 75 %

(Library mix) S. aureus ATCC 25923 Seattle 1945, Methicillin sensitive 25 %
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Table 2 Details of the four MinION sequencing runs

Sample Chemistry Basecall Time Read Base Median Quality Quality 2D
version (hrs) count count (Mb) length mean (std) mean (std)

Single sample 1 R7 1.4 60 38165 185 4580 4.70 (0.91) 8.96 (0.63)

Single sample 2 R7 1.4 60 7293 39 4936 4.95 (1.2) 9.34 (0.87)

Single sample 3 R7.3 1.9 36 15911 86 5242 4.58 (1.7) 9.46 (1.48)

Mixture sample R7.3 1.10 21 5631 12 825 5.44 (2.1) 10.72(2.41)

Read quality in Phred score

and accuracy of our runs were consistent with other user
reports [12–15].

Species detection
For real-time bacterial species detection, we built a
database from 2785 complete genomes of 1489 bacterial
species available in GenBank (accessed Nov 2014), aug-
mented with two K. quasipneumoniae genomes (which
was not the strain we sequenced) as none were present
in the database. The database contained several K. pneu-
moniae, E. coli and S. aureus strains (10, 63 and 49
respectively), but none of the five strains in our sam-
ples were present. The pipeline aligns sequence reads as
they are generated from the sequencer to this database.
The species typing algorithm periodically computes the
simultaneous proportions of the species present in the
sample and reports the 95 % confidence intervals of these
proportions (see Methods).
In both K. pneumoniae samples as well as the K. quasip-

neumoniae sample, we successfully detected the major
species present in the isolate. This was achieved with
as little as 120 sequence reads requiring only 5 min of
sequencing time (Fig. 3a, b and c). For K. pneumoniae
strains ATCCBAA-2146 andATCC 13883, it required less
than 500 reads (10 and 15min of sequencing, respectively)
to reach a 95 % confidence interval of less than 0.05. For
strain ATCC 700603 it required only 300 reads to correctly
identify K. quasipneumoniae as the species.
The pipeline accurately identified the two species

in the mixture sample as E. coli and S. aureus after

obtaining around 100 reads (5 min of sequencing). The
reported proportions became stable after around 1200
reads (35 min of sequencing). E. coli was the predominant
species type in the mixture sample and it was evident with
high proportion of sequencing reads supporting the E. coli
species.

Multi-locus sequence typing
Most bacteria are conventionally strain-typed using a
multi-locus sequence typing (MLST) system that requires
accurate genotyping to distinguish the alleles of seven
house-keeping genes [16]. Our analysis of MinION raw
read quality (Additional file 1: Figure S1), together with
other user reports [12–15], indicated high error rates in
MinION sequencing in comparison to Illumina Miseq
sequencing. This suggested that MLST analysis would
be challenging with MinION sequence data, especially in
real-time fashion.
We developed a method to carry out MLST using Min-

ION sequence data. Our method selected reads spanning
each of the house-keeping genes. It then used multiple
reads aligned to the same gene to correct error in the raw
sequence reads and subsequently combined information
across multiple alleles in a likelihood-based framework
(see Methods). Table 3 presents the top five highest score
sequence types (in log-likelihood) for K. pneumoniae and
K. quasipneumoniae strains using MinION sequencing.
In all three strains, the correct sequence types were the
highest score out of 1678 sequence types available in the
MLST database. We noticed that the typing system also

Fig. 2 Sequencing yields over time for the four samples. Yields are shown in terms of read count (left) and base count (right)
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a) b)

d)c)

Fig. 3 Real-time identification of bacterial species from MinION sequencing data for four different bacterial samples: a) K. pneumoniae ATCC
BAA-2146, b) K. quasipneumoniae ATCC 700603, c) K. pneumoniae ATCC 13883 and d) Mixture of 75 % E. coli ATCC 25922 and 25 % S. aureus ATCC
25923. The bars represent confidence intervals at the 95 % level

outputted several other sequence types with the same
likelihood (e.g., ST-751 and ST-864 for strain ATCC BAA-
2146 and ST-851 for strain ATCC 700603). We examined
the profiles of these sequence types, and found them to
be highly similar. For example, sequence types ST-751
and ST-864 (reported for strain ATCC BAA-2146) dif-
fered to the correct sequence type ST-11 by only one
single nucleotide polymorphism (SNP) from the total of
3012 bases in seven genes. Similarly, sequence type ST-
851 (co-highest score reported for strain ATCC 700603)
differed to the correct sequence type ST-489 by two alleles
(genes phoE and tonB). Because the run had a poor

yield, only one read was aligned to these two genes by
the end of the run, which may have also contributed to
the inability to differentiate these two sequence types.
While the results were encouraging, this also sug-
gested that traditional MLST with nanopore sequenc-
ing requires high coverage to report the sequence
type with absolute certainty. A more accurate strain-
typing methodology would need to consider all of the
sequenced reads, rather than just those 7 house-keeping
genes. Therefore we further devised a method for strain-
typing which was based on presence or absence of
genes.

Table 3 MLST results for three K. pneumoniae strains

ATCC BAA-2146 ATCC 700603 ATCC 13883
ST-11 ST-489 ST-3

Rank Type Score Type Score Type Score

1 ST-11 1985.47 ST-489 418.45 ST-3 1451.65

2 ST-751 1985.47 ST-851 418.45 ST-136 1450.21

3 ST-864 1985.47 ST-257 413.57 ST-38 1444.81

4 ST-1080 1984.46 ST-356 413.57 ST-1106 1444.19

5 ST-1680 1982.62 ST-414 413.57 ST-931 1441.44

The top five probable sequence types are shown for each sample. The highest score sequence types are highlighted in bold
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Strain typing by presence or absence of genes
We developed a novel strain typing method to identify a
known bacterial strain from the MinION sequence reads
based on patterns of gene presence and absence. This
approach is intended to rapidly identify the presence of
a sequence type that has already been characterised, for
example in an outbreak scenario, with subsequent confir-
mation using MLST once more data has been collected.
We downloaded the genome assemblies of all strains for
K. pneumoniae, E. coli and S. aureus species from the Ref-
Seq repository and identified their sequence types using
the relevant MLST schemes. This resulted in sets of 125
sequence types for K. pneumoniae, 353 for E. coli and
107 for S. aureus. For each sequence type, we picked
the highest quality assembly (in terms of N50 statis-
tics) and extracted gene sequences from its RefSeq gene

annotation. We then grouped genes from a species based
on 90 % sequence identity, and therein obtained the gene
profile for each sequence type.
Our pipeline identified genes present in the sample from

sequence reads as they were generated by the MinION
device. It then used this information to infer the posterior
probability of each of the sequence types, as well as the 95
% confidence intervals in this estimate (see Methods). For
our K. pneumoniae and K. quasipneumoniae samples, we
successfully identified the corresponding sequence types
from the sequence data with 95 % confidence within
10 min of sequencing time and with as few as 200
sequence reads (Fig. 4a, b and c). We streamed sequence
reads from the mixture sample through the strain typing
systems for E. coli and S. aureus, and in both cases, the
correct sequence types of two species in the sample were

Fig. 4 Real-time strain identification from MinION sequencing data on three different K. pneumoniae strains (a, b and c) and a E. coli strain (d) and a S.
aureus strain (e) from the mixture sample. The bars represent confidence intervals at the 95 % level
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also recovered. The correct sequence type for E. coli strain
in the 75 %/ 25 % E. coli, S. aureus mixture was recovered
after 25 min of sequencing with about 1000 total reads
(or approximately 750 E. coli derived reads) (Fig. 4d). The
pipeline was able to correctly predict the S. aureus strain
(which is known to have much less gene content variation)
in this mixture sample after 2 h of sequencing with about
2800 total reads (or approximately 700 S. aureus derived
reads).

Antibiotic resistance detection
The antibiotic resistance gene profiles of the samples
were also characterised with MinION sequencing data.
We obtained antibiotic drug resistance genes from the
ResFinder database [17] (accessed July 2015). This set
contained 2132 gene sequences, including variants of the
same genes. We grouped these gene sequences based on
90 % sequence identity into 609 groups. In this grouping,
we found that sequences in a group were variants of the
same gene.
Our antibiotic resistance profile identification pipeline

aligned sequence reads to this antibiotic gene database.
The algorithms retained reads that aligned to these genes,
and periodically performed multiple alignment of reads
that were aligned to the same gene. It then generated a
consensus sequence from these reads, and used a proba-
bilistic Finite State Machine [18] to re-align the consen-
sus sequence to the gene sequence (see Methods). The
pipeline reported the presence of a resistance gene as soon
as the alignment score reached a threshold.
Table 4 shows the time-line of antibiotic gene detec-

tion from MinION sequencing of three K. pneumoniae
strains. For the NDM-1-producing strain ATCC BAA-
2146, we identified the presence of 26 antibiotic resistance
genes in the MiSeq assembly of the strain. Our real-time
pipeline identified all these 26 genes and an additional
gene blaSHV from 10 h of MinION sequencing. No fur-
ther genes were detected thereafter. As gene blaSHV was
reported with high confidence from the real-time analy-
sis, we further investigated the alignment of the MiSeq
assembly with this gene, and found that the gene was
aligned to two contigs in the assembly suggesting the
MiSeq assembly was fragmented in the middle of the
gene. We sourced a high quality assembly of the strain’s
genome using PacBio sequencing [19] and found that the
assembly contained the gene. In other words, our pipeline
detected precisely the antibiotic gene profile for this strain
from 10 h of MinION sequencing. We observed that the
majority of these genes were identified in the early stage
of sequencing, i.e., three quarters were reported within
1.5 h of sequencing, at fewer than 4000 reads (making
up only a 3-fold coverage of the genome). We observed
similar performance for K. pneumoniae strain ATCC
13883 where 5 out of 6 genes were detected after 2 h of

sequencing. The last gene (oqxB) was detected after 9.5 h
of sequencing, again recovering the full resistance profile
without any false positive. For the multi-drug resistant K.
quasipneumoniae strain ATCC 700603, the pipeline only
detected 8 out of 11 genes. The reduced sensitivity for
this sample was most likely due to the low sequence yield
(33 Mb of data in total, or only 7-fold coverage of the
genome).

Comparison with other methods
To date, only a few pipelines exist to identify
species/subspecies from nanopore sequencing data,
namely Metrichor [8, 20] and MetaPORE [9]. These
methods commonly place the sample of question to a
phylogeny taxonomy based on the number of reads that
either are aligned to, or have a similar k-mer profile
to, the taxon’s reference genome. Our species typing
method is somewhat similar to this approach, although
it additionally estimates confidence intervals in the
species assignment. While we found that this approach
can successfully identify species within 500 reads, the
signal-to-noise from nanopore sequencing is too low to
use a similar approach to correctly discriminate at the
strain level, unless a large amount of data is available. Our
strain typing uses a novel approach based on the presence
and absence of genes and hence is able to make inference
from a smaller number of reads.
Among the mentioned methods, only Metrichor [20]

and MetaPORE [9] support genuine real-time analysis.
As MetaPORE only focuses on viral species identification,
we could only directly compare the performance of our
method to Metrichor. We uploaded the first 1000 reads
from our single samples and the first 3000 reads from our
mixture sample to the Metrichor What’s In My Pot Bacte-
ria k24 for SQK-MAP005 v1.27 (WIMP) workflow. Along
with the species/subspecies and strains reported, WIMP
provides a classification score filter where users can set
the permissiveness of reporting. Table 5 presents the bac-
terial taxa reported by the WIMP workflow for our data
with the default classification score. For sample K. pneu-
moniae ATCC BAA-2146, WIMP only returned the taxon
K. pneumoniae at the species level. On the other hand,
for the second and third samples (K. quasipneumoniae
ATCC 700603 and K. pneumoniae ATCC 13883), WIMP
reported several K. pneumoniae strains, but not the cor-
rect sequence types of these samples (ST489 and ST3). For
the mixture sample, two E. coli and three S. aureus strains
were reported, but these were also the incorrect sequence
types (E. coli ST73 and S. aureus ST243). While it was
unclear whether the sequence types of these samples were
included in WIMP’s database, ST11 clearly was as it was
reported in sample K. pneumoniae ATCC 700603. How-
ever, WIMP was unable to identify sample K. pneumoniae
ATCC BAA-2146 to the strain level with 1000 reads,
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Table 4 Time-line of resistance gene detection from the K. pneumoniae samples

Time genes Class TP/FP Sensitivity Specificity Data
(mins) (%) (%) (no. of reads)

K. pneumoniae ATCC BAA-2146

30 1228

mphA macrolide TP

blaSHV beta-lactamase FP∗

strA aminoglycoside TP

blaTEM beta-lactamase TP

strB aminoglycoside TP

blaCTX beta-lactamase TP 26.67 87.50

60 2613

blaLEN beta-lactamase TP

sul2 sulphonamide TP

blaOXA beta-lactamase TP

aac3 aminoglycoside TP

aac6 aminoglycoside TP

blaCMY beta-lactamase TP

blaCFE beta-lactamase TP

blaLAT beta-lactamase TP

blaBIL beta-lactamase TP 53.33 94.12

90 3844

QnrB quinolone TP

aadA aminoglycoside TP

oqxA quinolone TP

tetA tetracycline TP

oqxB quinolone TP 76.67 95.83

120 5258

dfrA trimethoprim TP 80.00 96.00

240 10 788

blaOKP beta-lactamase TP 83.33 96.15

270 11 931

rmtC aminoglycoside TP 86.67 96.43

300 13 022

sul1 sulphonamide TP

sul3 sulphonamide TP 93.33 96.55

540 20 200

fosA fosfomycin TP 96.67 96.67

600 21 546

blaNDM beta-lactamase TP 100.00 96.77

K. quasipneumoniae ATCC 700603

30 582

oqxA quinolone TP

blaSHV beta-lactamase TP

oqxB quinolone TP 27.27 100.00

60 1090

aadB aminoglycoside TP 36.36 100.00
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Table 4 Time-line of resistance gene detection from the K. pneumoniae samples (Continued)

390 3704

sul1 sulphonamide TP

sul3 sulphonamide TP 54.55 100.00

420 3810

blaOXA beta-lactamase TP 63.64 100.00

540 4156

blaOKP beta-lactamase TP 72.73 100.00

K. pneumoniae ATCC 13883

30 1264

fosA fosfomycin TP 16.67 100.00

60 2186

blaSHV beta-lactamase TP

blaOKP beta-lactamase TP 50.00 100.00

90 2952

blaLEN beta-lactamase TP 66.67 100.00

120 3584

oqxA quinolone TP 83.33 100.00

570 8112

oqxB quinolone TP 100.00 100.00

TP/FP: true positives/false positives according to the resistance gene profiles obtained from MiSeq sequencing. ∗Gene blaSHV was detected from MinION sequencing of K.
pneumoniae ATCC BAA-2146 but not from MiSeq sequencing due to the inability to resolve a repeat in the gene

while our pipeline could do so in less than 400 reads
(Fig. 4).
Our species typing module has some similarities to the

approach used by MetaPhlAn [21], which was designed
for metagenomics inference using millions of short-reads.
Like MetaPhlAn, we used the proportion of reads that
map to different taxonomic groupings to estimate the pro-
portion of different species in a sample. MetaPhlAn opti-
mises computational speed by aligning to a precomputed
database of sequences that are pervasive within a single
taxonomic grouping but not seen outside that grouping.
This allows it to blast against a database that is 20 times
smaller than a full bacterial genomic database. Our species
typing approach, on the other hand, is designed to make a
similar inference using only hundreds of reads, and more-
over, also continuously updates confidence intervals so the
user knows when they can stop sequencing and make a
diagnosis.
Antibiotic resistance gene detection from MinION

sequencing was also explored in Judge et al. [22]. Their
approach was broadly similar to ours in that it initially
aligned sequence reads to a resistance gene database, and
then constructed a consensus sequence from the multiple
alignment of matched reads. Both pipelines reported close
to perfect resistance gene identification when compared

with Illumina MiSeq sequencing. However, our pipeline
uses a novel alignment parameter estimation using prob-
abilistic Finite State Machines (see Methods). It is hence
able to confidently report the presence of a resistance gene
as soon as sufficient supporting data are available. This is
the essence of real-time analysis presented here.

Computational time
In our analyses, sequence reads were streamed through
the pipeline in the exact order and timing that they were
generated. Analysis results were generated periodically
(every minute for species typing and strain typing and
every five minutes for resistance gene identification). We
examined the scalability of the pipeline to higher through-
put by running the pipeline on a single computer equipped
with 16 CPUs and streaming all sequence reads from
the highest yield run (185 Mb from sample K. pneu-
moniae ATCC BAA-2146) through the pipeline at 120
times higher speed than they were generated (e.g., data
sequenced in 2 min were streamed within 1 s). Analy-
sis results were generated every 5 s for typing and every
one minute for gene resistance analysis. With this hypo-
thetical throughput, our pipeline correctly identified the
species and strain of the sample in less than 20 s; there-
upon we could terminate the typing analyses. The pipeline
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Table 5 Report of Metrichor What’s In My Pot Bacteria k24 for SQK-MAP005 v1.27 (WIMP) from the first 1000 reads of three single
samples and the first 3000 reads of the mixture sample

Sample Reported by Metrichor Sequence type Level Accuracy
species/strain

K. pneumoniae (ATCC BAA-2146, ST11) K. pneumoniae - Species �/

K. quasipneumoniae (ATCC 700603, ST489)∗ K. pneumoniae subsp. pneumoniae - Sub-species �/

K. pneumoniae 342 ST146 Strain �/×
K. pneumoniae JM45 ST11 Strain �/×
K. pneumoniae CG43 ST86 Strain �/×
K. oxytoca - Species ×/

K. variicola At-22 - Strain �/×

K. pneumoniae (ATCC 13883, ST3) K. pneumoniae subsp. pneumoniae 1084 ST1084 Strain �/×
K. pneumoniae CG43 ST86 Strain �/×
K. pneumoniae subsp. rhinoscleromatis SB3432 ST67 Strain �/×
E. coli O103:H2 str. 12009 ST17 Strain ×/×

Mixture sample E. coli UMN026 ST597 Strain �/×

75 % E. coli (ATCC 25922, ST73) E. coli ETEC H10407 ST48 Strain �/×
S. aureus subsp. aureus HO 5096 0412 ST22 Strain �/×

25 % S. aureus (ATCC 25923, ST243) S. aureus subsp. aureus MRSA252 ST36 Strain �/×
S. aureus subsp. aureus T0131 ST239 Strain �/×
Yersinia pestis - Species ×/

The last column indicates if the detection is correct (�) or incorrect (×) at species/strain levels. The Metrichor was able to identify the species (with some false positives) but
not the strains in our samples
*K. quasipneumoniae ATCC 700603 strain was recently re-classified from K. pneumoniae as K. quasipneumoniae [49] but has not been updated in most major databases

then reported all the resistance genes in five minutes,
which corresponded to the data generated in the first 10 h
of actual sequencing. This demonstrates the scalability of
our pipeline to higher throughput sequencing platforms
in the future.

Real-time analysis of a clinical isolate
With the pipeline in place, we analysed a clinical K.
pneumoniae isolate collected in Greece that was found
to be resistant to an extensive range of antibiotics. We
sequenced the sample on the MinION with Chemistry
R7.3 and ran the Metrichor service, which performed
basecalling and sample identification during the first three
hours of the run. We also ran our pipeline in real-time on
the base-called data returned from the Metrichor service.
We observed a delay from the base-calling of the data;

the first read was sequenced on the MinION within one
minute from starting the run, but the base-called data
were received after 6 min. The delay tended to increase
as more data were generated. We found the base-called
data returned during the three-hour run of the Metri-
chor service were actually sequenced within 45 min on
the MinION. This highlights the need for a local base-
calling step to improve real-time analysis. Figure 5a and 5b

show the timing (from the start of the MinION run)
of sample identification using our pipeline. The pipeline
reported K. pneumoniae as the only species in the sam-
ple within 10 min, and reached a confidence interval of
less than 0.1 in 40 min when approximately 200 reads
were analysed. We noticed that these 200 reads were
actually sequenced in 7 min by the MinION. For strain
identification, our pipeline initially reported ST1199 but
after 2.5 h, reported ST258 as the sequence type for
this isolate. It is worth noting that the two strains are
highly similar; their MLST profiles differ by only one
SNP in the seven house-keeping genes. By sequencing
the isolate on the Illumina MiSeq as described above,
we confirmed that the sequence type for the strain is
ST258. On the other hand, the sample identification from
Metrichor initially reported K. pneumoniae 1084 (ST23),
but finally reported two strains namely K. pneumoniae
JM45 (ST11) and K. pneumoniae HS11286 (ST11) after
3 h (Additional file 2: Figure S2). During the three-hour
run with less than 4000 reads (16 Mb of data), our
pipeline reported two antibiotic resistance genes, namely
sul2 (sulphonamide) and tetA (tetracycline). Our analysis
of the Illumina data for this strain confirmed the pres-
ence of these two genes. Clinical susceptibility testing
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a) b)

Fig. 5 Real-time species typing (a) and strain typing (b) of a clinical isolate directly from the MinION using our pipeline and the Metrichor service.
The time includes basecalling timing

also showed the resistance of this isolate to tetracycline
and sulfamethoxazole-trimethoprim (MIC ≥ 16 μg/mL
and ≥ 320 μg/mL, respectively analyzed by VITEK®2
bioMérieux, Inc). Finally, we re-analysed the data from
this run using the emulation described previously, and
obtained the same results as from the real-time analysis.

Discussion
In recent years high-throughput sequencing has become
an integrative tool for infectious disease research [23, 24],
predominantly using massively parallel short-read
sequencing technologies. These technologies achieve
a very high base calling accuracy, making them ideally
suited to applications requiring accurate calling of SNPs.
However, these technologies attain their high yield
by sequencing a single base per cycle for millions of
sequence fragments in parallel, where each cycle takes at
least 5 min.
The Oxford Nanopore MinION device, on the other

hand, generated as many as 500 reads in the first 10 min
of sequencing in our hands (which is 3 times lower
than the theoretical maximum). The error rate of these
reads was substantially higher than the corresponding
Illumina short-read data. Many existing bioinformatics
algorithms rely on accurate base and SNP calling, which
makes their application to MinION data challenging.
As an example, most existing strain typing approaches
often use a MLST system, either on a pre-defined set
of house keeping genes [25], or on core genes set [26].
These approaches are highly standardised, reproducible
and portable, and hence are routinely used in laboratories
around the world. Rapid genomic diagnosis tools using
MLST from high-throughput sequencing such as SRST2
[27] have also been developed. While we showed in this
article that MLST can be adapted to identify bacterial
strains from nanopore sequencing, this requires high cov-
erage sequencing of the gene set to overcome the high
error rates.

The main contribution of this article is to demon-
strate that despite the higher error rate, it is possible to
return clinical actionable information, including species
and strain identification from as few as 500 reads. We
achieved this by developing novel approaches that are less
sensitive to base-calling errors and which use whatever
subset of genome-wide information is observed up to a
point in time, rather than a panel of pre-defined markers
or genes. For example, the strain typing presence/absence
approach relies only on being able to identify homology
to genes and also allows for a level of incorrect gene
annotation.
Our strain typing module has the advantage of being

able to rapidly type a known strain with a small number of
low quality (i.e., mostly 1D) reads. Competing approaches
using k-mers appear to require substantially more high
quality data. The drawback of our approach is that if a
large number of genes are lost or gained in a single event,
such as the gain or loss of a plasmid, the most likely
strain may be incorrect. Thus it would be ideally suited for
rapidly typing a known strain in an outbreak scenario.
Our antibiotic resistance module is able to identify the

drug resistance potential of an isolate within a few hours
of sequencing with very high specificity. In particular, with
the most recent chemistry utilised in this paper (R7.3), we
were able to identify the complete resistance potential of a
K. pneumoniae isolate without any false positives in 9.5 h,
and with approximately 8000 reads, (80 % of the resistance
genes were identified with 3000 reads in 2 h). In order to
achieve high specificity we designed a probabilistic Finite
State Machine for error correction.
One of the major advantages of a whole-genome

sequencing approach to drug resistance profiling is that
it is not necessary to restrict the analysis to a limited
panel of drug-resistance tests, but it is possible to discover
the complete drug resistance profile in a sample. With a
complete picture of the drug-resistance profile within a
few hours, a clinician may be able to design an antibiotic
treatment regimen that is both more likely to succeed and
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less likely to induce further antibiotic resistance. How-
ever, even achieving completely accurate identification of
resistance genes is only a first step in accurately predict-
ing the resistance profile, as mutations may effect the rate
at which these genes are transcribed and also their antibi-
otic resistance activity. Prediction of antibiotic resistance
from genotype is an area that warrants substantial further
research.
In summary, we have developed an open-source, flexi-

ble pipeline for real-time analysis of MinION sequencing
data. The pipeline includes various streaming algorithms
to identify pathogens and their antibiotic resistance, but
others can be seamlessly integrated into [28]. The only
step in our pipeline at which data are written to, and then
re-read from disk is the base-calling step using Metrichor.
npReader immediately identifies new reads as they are
generated by Metrichor; however, some delay can occur
while waiting for base-called data to be returned from
Metrichor. Oxford Nanopore Technologies have recently
opened up the Application Programming Interface to
extract raw data directly from the MinION. This, together
with the recent development of open source base-calling
algorithms [29, 30] to run on the local machine, will allow
future development of a completely streaming pipeline,
in the sense of never saving data to disk. Our pipeline
can be deployed on a single 16 core computer, capa-
ble of analysing MinION data streaming at up to 120×
the current rate of sequencing; or on a high perfor-
mance computing cluster to scale with the potential even
higher throughput of forthcoming nanopore sequencing
platforms.

Methods
DNA extraction
Bacterial strains K. pneumoniae ATCC BAA-2146, ATCC
13883, K. quasipneumoniae ATCC 700603, E. coli ATCC
25922 and S. aureus ATCC 25923 were obtained from
the American Type Culture Collection (ATCC, USA). K.
pneumoniae clinical isolate was acquired from Hygeia
General Hospital, Athens, Greece from a patient stool
sample in 2014 (Lab ID 100575214, isolate 1). Clini-
cal susceptibility profiling by VITEK®2 (bioMérieux Inc.)
identified the isolate as carbapenemase-producing (KPC),
giving rise to extended spectrum β-lactam resistance. It
was also deemed resistant to aminoglycoside, phenicol,
quinolone, sulphonamide, tetracycline and trimethoprim
antibiotics, rendering it an extensively drug-resistant bac-
terial isolate. Bacterial cultures were grown overnight
from a single colony at 37 °C with shaking (180 rpm).
Whole cell DNAwas extracted from the cultures using the
DNeasy Blood and Tissue Kit (QIAGEN©, Cat #69504)
according to the bacterial DNA extraction protocol with
enzymatic lysis pre-treatment.

MinION sequencing
Library preparation was performed using the Genomic
DNA Sequencing kit (Oxford Nanopore) according to
the manufacturer’s instruction. For the R7 MinION Flow
Cells SQK-MAP-002 sequencing kit was used and for
R7.3 MinION Flow Cells SQK-MAP-003 or SQK-MAP-
006 Genomic Sequencing kits were used according to the
manufacturer’s instruction.
For the library mixture sample, the DNA concentration

of each library was measured using Qubit Fluorimeter
(Thermo Fisher Scientific). Based on the concentration,
75 % of E. coli (ATCC 25922) library and 25 % of S. aureus
(ATCC 25923) library were mixed prior to sequencing.
A new MinION Flow Cell (R7 or R7.3) was used for

sequencing each sample. The library mix was loaded onto
the MinION Flow Cell and the Genomic DNA 48 h
sequencing protocol was initiated on the MinKNOW
software.

MinION data analysis
The sequence read data were base-called with Metri-
chor Agent. We used npReader [10] to convert base-
called sequence data in fast5 format to fastq format.
The npReader program also extracted the time that each
read was sequenced and used this information to sort
the read sequences in order they were produced. For
the real-time analyses, we wrote a program to emulate
the sequencing process in that it streamlined each read
in the exact order it was sequenced. The program also
allowed us to scale up the sequencing emulation to a fac-
tor of choice. Our pipeline allows for filtering out 1D
reads at multiple stages (including via npReader). All sub-
sequent analyses in this paper used both 1D and 2D
reads.

MiSeq sequencing and data analysis
Library preparation was performed using the NexteraXT
DNA Sample preparation kit (Illumina), as recommended
by the manufacturer. Libraries were sequenced on the
MiSeq instrument (Illumina) with 300 bp paired end
sequencing, to a coverage of over 100-fold. Read data were
trimmed with trimmomatic [31] (V0.32) and subsequently
assembled using SPAdes [32] (V3.5), resulting in assem-
blies with N50 exceeding 200 Kb. Their sequence types
were identified by submitting the assembled genomes to
the MLST servers [33] for K. pneumoniae, E. coli (set #1)
and S. aureus.
We identified the antibiotic resistance profiles of these

strains from their MiSeq assemblies. We used blastn
(V2.29)to align these assemblies to the database of resis-
tance genes obtained from ResFinder [17]. Genes that
were covered at least greater than 85 % by the alignments
and with greater than 85 % sequence identity were consid-
ered to be present in the sample. These gene profiles were
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used as a benchmark to validate the MinION sequencing
analysis.

Species typing
We downloaded the bacterial genome database on Gen-
Bank (accessed 19 Nov 2014), which contained high qual-
ity complete genomes of 2785 bacterial strains from 1487
bacteria species. We expanded this database to include
two K. quasipneumoniae genomes. Our species typing
pipeline streamed read data from npReader directly to
BWA-MEM [11] (V0.7.10-r858), which aligned the reads
to the database. Output from BWA in SAM format was
streamed directly into our species typing pipeline, which
calculated the proportion of reads aligned to each of these
species. Our species typing method considers the pro-
portions {p1, p2, .., pk} of k species in the mixture as the
parameters of a k-category multinomial distribution, and
the read counts {c1, c2, .., ck} for the species as an observa-
tion from c1 + c2 + .. + ck independent trials drawn from
the distribution. It then uses the MultinomialCI package
in R [34] to calculate the 95 % confidence intervals of these
proportions from the observation.

Multi-locus sequence typing
MinION sequence reads fromK. pneumoniae strains were
aligned to the seven house-keeping genes specified by the
MLST system using BWA-MEM [11]. We then collected
reads that were aligned to a gene and performed a multi-
ple alignment on them using kalign2 [35]. The consensus
sequence created from the multiple alignment was then
globally aligned to all alleles of the gene using a probabilis-
tic Finite State Machine (see below) for global alignment.
The score of a sequence type was determined by the sum
of the scores of seven alleles making up the type.

Strain typing
We built gene profile databases for K. pneumoniae, E. coli
and S. aureus from the RefSeq annotation. Specifically, we
obtained the publicly available assemblies of these species
listed on the RefSeq (accessed 17 July 2015). We used
the relevant MLST schemes obtained from [33] to iden-
tify sequence type of each assembly. For each sequence
type, we selected the assembly with highest N50 statis-
tic and use the RefSeq gene annotation of the assembly to
determine the gene content of the sequence type.
In order to develop a simple probabilistic pres-

ence/absence strain typing model, we considered the
genomes of each of the strains simply as a collection of
genes. Denote by Stj=1..J all the strains in our database (for
a fixed species). Denote by gj,k the kth gene in the database
for strain j, where the genes are listed in no particular
order. Denote by Nj the total number of genes in Stj.
We aligned each sequence read ri from the MinION

device to the gene database using BWA-MEM [11]. We

counted the number of genes of each strain that aligned to
read ri, denoted by Nj(ri).
We describe below how to calculate the likelihood,

P(ri|Stj), of each strain generating each read, from which
we can calculate the posterior probability of each strain Stj
conditional on observing the reads r1 . . . rm:

P(Stj|r1..rm) =
∏

i=1..m P(ri|Stj)∑
j′
∏

i=1..m P(ri|Stj) (1)

The probability P(ri|Stj) could be calculated using a
simple model as:

Psimple(ri|Stj) = Nj(ri)
Nj

, (2)

However, this model suffers from the problem that if
we observe any read that overlaps a gene not in the refer-
ence genome for Stj, then the posterior probability of that
strain will become zero. Thus, this model is very unstable.
In order to make this estimate more stable, we used a mix-
ture model that allows the read to have been generated by
a background model:

P(ri|Stj) = (1 − c) ∗ Nj(ri)
Nj

+ (c) ∗ P

⎛
⎝ri|

⋃
j′
Stj′

⎞
⎠ . (3)

The background model considers the probability that
the read was generated from any of the strains:

P

⎛
⎝ri|

⋃
j′
Stj′

⎞
⎠ =

∑
j′ Nj′(ri)∑
j′ Nj′

. (4)

Thismakes the posterior probability estimatesmore sta-
ble. It alsomakes themodel robust to incorrect annotation
of the reads from the MinION sequencer and incorrect
annotation of the reference genome. We have investigated
use of c = 0.2, c = 0.1 and c = 0.05 and found that it
has little impact on the results, with slightly smaller con-
fidence intervals (data not shown). We chose c = 0.2 in
order to conservatively estimate confidence intervals.
Finally, in order to calculate confidence intervals we

employed a bootstrap resampling approach in which we
resampled m reads from r1, . . . rm with replacement. This
is repeated 1000 times, and the posterior probabilities are
recalculated every iteration. We calculated the 95 % con-
fidence intervals from the empirical distribution of these
posterior probabilities.
To gain some insight into how this model works in

response to gene presence, consider a gene g, which is
present in a fraction f of strains, including Stj but not
including Stk . For simplicity, assume that each strain has
N genes. The difference in log-likelihood Stj and Stk con-
ditional on g can be approximated by log(1/c) + log(1/f ),
showing that a more specific gene has a stronger effect
in our model than a common gene in distinguishing
strains.
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To gain insight into the effect of gene absence in contrast
to gene presence, assume instead that the only difference
between Stj and Stk is the deletion of a single gene (g) in
Stj, and denote by N = Nj = Nk − 1. If we sequence
N ln(2) genes from Stj without seeing gene g, the differ-
ence in log-likelihood becomesN ln(2)∗(log(N)−log(N−
1)) ≈ 1bit, corresponding to the likelihood that Stj is
twice as big as the likelihood of Stk . For example, if a
strain has 1000 genes, then we would need to observe 693
genes without observing g to be able to conclude that the
observed data were twice as likely to be generated from
the species with a single gene deletion. For comparison,
we would need to only sequence 100 genes from Stk to get
an expected log-likelihood difference of 1 bits versus Stj,
demonstrating the extra information in gene ’presence’
versus ’absence’ typing.

Antibiotic resistance gene classes detection
We downloaded the resistance gene database from Res-
Finder [17] (accessed July 2015). We aligned each gene to
the collection of bacterial genomes in RefSeq using blastn
[36], and used the best alignment of the gene to extract
100 bp sequences flanking the antibiotic resistance genes.
We found that the inclusion of these flanking sequences
improved the sensitivity of mapping MinION reads to the
gene database.
We then grouped these genes based on 90 % sequence

identity into 609 groups. We manually checked and found
that genes within a group were variants of the same gene.
We selected the longest gene in each group to make up
a reduced resistance gene database. To create a bench-
mark of resistance genes for a sample, we used blastn to
compare the Illumina assembly of the sample against this
reduced gene database, and reported genes with greater
than 85 % coverage and identity.
Our analysis pipeline aligned MinION sequencing data

to this reduced resistance gene database using BWA-
MEM [11] in a streamlined fashion, and examined genes
with reads mapping to the whole gene (not includ-
ing flanking sequences). Because of high error rates
with MinION sequence data, we noticed a high rate
of false positive genes. To reduce false positives, we
used kalign2 [35] to perform a multiple alignment of
reads that were aligned to the same gene. The con-
sensus sequence resulting from the multiple alignment
was then compared with the gene sequence using a
probabilistic Finite State Machine (see below). The
pipeline then reported gene classes based on the genes
detected.

Sensitive alignment of noisy sequences with probabilistic
Finite State Machines
Our methods for MLST strain typing and antibiotic
resistance gene identification require the alignment of a

consensus sequence to a gene or a gene allele. Such an
alignment generally assumes a model and a set of parame-
ters of the differences between the sequences. It is widely
recognised that the accuracy of the alignment is sensitive
to these parameters [37–39]. However, in the context of
real-time analysis of MinION sequencing, it is not possi-
ble to select in advance a sensible set of parameters. On
the one hand, the quality among sequence reads differs
remarkably; as shown in Additional file 1: Figure S1 and
Table 2 – the majority (95 %) of the reads across our four
runs have a Phred score ranging between 3 and 7 for tem-
plate and complement reads (corresponding to 50–80 %
accuracy) and between 6 to 12 for 2D reads (75–95 %
accuracy). On the other hand, a consensus sequence is
computationally constructed from a set of reads. Its qual-
ity is hence contingent to not only the quality of the reads
but also the number of reads in the set.
We use a probabilistic Finite State Machine (pFSM)

[40] to model the differences, and hence the simultaneous
error profile of the consensus sequence. Briefly, a pFSM
is a probabilistic model of genomic alignment that takes
into account different types of variations including SNPs,
insertions and deletions. A pFSM is equivalent to a hidden
Markov Model. The pFSM consists of a set of states and
transitions between states. Each transition corresponds to
an action and is associated with a cost for the action. An
action could be one of copy (C), substitute (S), delete (D)
and insert (I). Figure 6 depicts a three-state pFSM, which
is equivalent to an affine gap penalty alignment model.
In order to assess an alignment of two sequences A and
B, under a hypothesis specified by the parameters, the
pFSM computes the cost to generate one sequence (say A)
given the other (B). For example, while in state Copy, the
machine consumes the next base in B, generates the next
base in A; it is said to take action C if the two bases are
the same, or action S otherwise, and to follow either tran-
sition to state Copy. Alternatively, the machine can take
either action D (consumes the next base in B without gen-
erating any base in A and moves to state Delete), or action
I (generates the next base in A without consuming a base
in B and moves to state Insert). These actions are repeated
until the whole sequence B is generated.
We used an information-theoretic measure whereby the

cost of a transition is that of encoding the generated base,
or in other words, the negative logarithm of the prob-
ability of the associated action (c = −log2(P(a)). The
foundation of this approach goes back to the 1960s when
it was proposed as a basis for inductive inference [41, 42].
It has since been used in several bioinformatics applica-
tions such as for calculating the BLOSUMmatrix [43] and
modelling DNA sequences [44, 45]. More importantly,
this information-theoretic framework allows one to esti-
mate a sensible set of parameters for any related two
sequences. This is done via an Expectation-Maximisation
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Fig. 6 Schematic of a three-state probabilistic Finite State Machine

process. This starts with an initial set of probabilities
at each state. In the E-step, the best alignment (lowest
cost) is calculated by a dynamic programming algorithm.
The frequencies of actions at each state are then used to
re-estimate the probabilities in the M-step. A detailed dis-
cussion of this process is provided in Allison et al [40] and
Cao et al. [46]. The process is guaranteed to converge to
an optimal, and it does so in only a few iterations in our
experience.

Additional files

Additional file 1: Figure S1. Histograms of read quality (in Phred score)
and read lengths of four MinION sequencing runs. (PDF 112 kb)

Additional file 2: Figure S2. Screen shot of What’s In My Pot (WIMP)
analysis of the clinical sample after three hours of sequencing. (PNG 58 kb)
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