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Abstract

Background: Linkage disequilibrium is defined as the non-random associations of alleles at different loci, and it
occurs when genotypes at the two loci depend on each other. The model of genetic hitchhiking predicts that strong
positive selection affects the patterns of linkage disequilibrium around the site of a beneficial allele, resulting in
specific motifs of correlation between neutral polymorphisms that surround the fixed beneficial allele. Increased levels
of linkage disequilibrium are observed on the same side of a beneficial allele, and diminish between sites on different
sides of a beneficial mutation. This specific pattern of linkage disequilibrium occurs more frequently when positive
selection has acted on the population rather than under various neutral models. Thus, detecting such patterns could
accurately reveal targets of positive selection along a recombining chromosome or a genome. Calculating linkage
disequilibria in whole genomes is computationally expensive because allele correlations need to be evaluated for
millions of pairs of sites. To analyze large datasets efficiently, algorithmic implementations used in modern population
genetics need to exploit multiple cores of current workstations in a scalable way. However, population genomic
datasets come in various types and shapes while typically showing SNP density heterogeneity, which makes the
implementation of generally scalable parallel algorithms a challenging task.

Findings: Here we present a series of four parallelization strategies targeting shared-memory systems for the
computationally intensive problem of detecting genomic regions that have contributed to the past adaptation of the
species, also referred to as regions that have undergone a selective sweep, based on linkage disequilibrium patterns.
We provide a thorough performance evaluation of the proposed parallel algorithms for computing linkage
disequilibrium, and outline the benefits of each approach. Furthermore, we compare the accuracy of our open-source
sweep-detection software OmegaPlus, which implements all four parallelization strategies presented here, with a
variety of neutrality tests.

Conclusions: The computational demands of selective sweep detection algorithms depend greatly on the SNP
density heterogeneity and the data representation. Choosing the right parallel algorithm for the analysis can lead to
significant processing time reduction and major energy savings. However, determining which parallel algorithm will
execute more efficiently on a specific processor architecture and number of available cores for a particular dataset is
not straightforward.
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Background
Introduction
Positive selection is the tendency of beneficial traits to
increase in prevalence (frequency) in a population and
is the driving force behind adaptive evolution [1]. The
selective sweep theory and the genetic hitchhiking model
[2] can be used to identify traces of positive selection by
detecting regions of reduced genetic variation (which are
said to have undergone a selective sweep. A trait is con-
sidered beneficial when the following two requirements
are met: i) it must increase the probability of survival and
reproduction of the organism, and ii) it must be heri-
table, i.e., it can pass to the organism’s offspring. When
these requirements are satisfied, population genetics the-
ory predicts that the frequency of this trait will increase
in the population. In modern genetic analyses, traits are
the various forms of a gene (alleles). For instance, if we
simplistically assume that the color of the eyes is con-
trolled by a single gene only, then the various eye colors
are determined by the alleles of this gene. Because a ben-
eficial allele increases the fitness of the organism carrying
it, its frequency will increase, and eventually all individu-
als of the population will possess it (the allele has reached
fixation). Physically, alleles are located on chromosomal
regions. Thus, on a chromosomal region, both a beneficial
allele and alleles that do not affect fitness (neutral alle-
les) may be found. Given that entire chromosomal regions
can potentially be inherited at once, beneficial alleles are
often physically linked to several neutral ones, leading
to the increase in frequency of linked neutral mutations
near the site of the beneficial allele. Neutral alleles can
also reach fixation, thus reducing the amount of poly-
morphism (number of single nucleotide polymorphisms,
SNPs) near the beneficial mutation (by definition, fixation
is monomorphic), and causing a selective sweep.
Selective sweep detection has theoretical significance

and practical applications. For instance, it can shed light
on the long-standing debate regarding the importance
of adaptive and non-adaptive forces in shaping genetic
polymorphisms [3]. Furthermore, it facilitates the detec-
tion of drug-resistant mutations in pathogens (e.g., HIV
[4, 5]) that could reveal potential reasons for treatment
failures [6] and lead to the design of more effective drug
treatments.
Nowadays, the developments in DNA sequencing tech-

nologies, such as next-generation sequencing (NGS), are
steadily contributing to an accelerating accumulation of
molecular sequence data, because entire genomes can
be rapidly and accurately sequenced in a cost-effective
way [7]. Furthermore, the field of bioinformatics has
many computationally demanding kernels1 that typically
require prohibitively long processing times for the anal-
ysis of large-scale datasets available today. This issue
has attracted the attention of the computer engineering

community to such a great extent that the well-known
Smith-Waterman pairwise sequence alignment algorithm
[8] frequently serves as one of the test applications to
demonstrate new engineering concepts in accelerator
platforms. Additionally, several other compute- and/or
memory-intensive bioinformatics kernels have been effi-
ciently executed on emerging technologies such as multi-
core central processing units (CPUs) [9–12], graphical
processing units (GPUs) [9, 13], and field programmable
gate arrays (FPGAs) [14–16]. The increased computa-
tional demands of the kernels used, in combination
with the rapidly increasing pace at which genomes are
sequenced today, generate an apparent challenge: how to
devise new algorithmic solutions to effectively exploit new
emerging technologies and eventually boost the capacity
of modern processing architectures to keep up with the
molecular data avalanche.
To this end, a software addition to the selective sweep

detection computing landscape is the open-source pro-
gram OmegaPlus [17], which has optimized parallel
implementations for the analysis of genomic datasets of
various shapes (dimensions), resulting from the varying
number of sequences and SNPs. OmegaPlus captures
linkage disequilibrium (LD) patterns of selective sweeps
using the ω statistic [18], by analyzing SNPs in intra-
species multiple sequence alignments (MSAs), essentially
n × m data matrices that contain n DNA sequences of
length m nucleotides each (also called alignment sites).
The computational kernel of OmegaPlus is optimized for
memory consumption, thus enabling the analysis of very
large datasets on workstations with limited resources,
such as personal computers. It relies on a computational
approach that divides a dataset into a user-defined num-
ber of genomic regions and computes the ω statistic at the
center of each region.
Before the release of OmegaPlus version 3.0.0 (January

2015), three parallelization alternatives for shared-
memory systems were available: (i) a fine-grained algo-
rithm that deploys all threads for the processing of a
single genomic region, (ii) a coarse-grained algorithm that
assigns a group of neighboring genomic regions to each
thread, and (iii) a multi-grained algorithm [19] in which
the master thread monitors the progress each thread
has made with the assigned group of regions, and peri-
odically directs all available threads (threads that have
finished analyzing their initially assigned group using
the coarse-grained algorithm) to assist, using the fine-
grained approach, the slowest thread at that particular
time. With the release of OmegaPlus v. 3.0.0, a new par-
allel algorithm is available, which implements a generic
‘offload-compute’ paradigm that organizes the LD calcu-
lations into chunks based solely on the available memory
on the system, i.e., ignoring the genomic region bor-
ders, and carries out an iterative two-step procedure of
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LD calculations (the ‘offload’ step) followed by ω statistic
calculations (the ‘compute’ step). All parallelization alter-
natives yield identical results, thus allowing performance
to be improved without compromising the accuracy of the
sweep detection method.
In this work, we present the aforementioned new

generic parallel algorithm that relies on the offload-
compute paradigm and conduct a thorough performance
evaluation of all four available parallel alternatives. Fur-
thermore, we assess the sensitivity and accuracy of
OmegaPlus over other methods and tools that can be
used for selective sweep detection via a series of sim-
ulated runs. From a performance standpoint, devising
an efficient parallel algorithm for the ω statistic is chal-
lenging because of the variety of possible different input
dataset types and shapes. For instance, a population genet-
ics study may analyze either nucleotide data comprising
a maximum of four possible states, A, C, G, and T,
where one is ancestral and the remaining are derived, or
assume the infinite site model [20], leading to the anal-
ysis of binary data where individuals can either carry an
ancestral state (0) or a derived state (1). Previous experi-
mental results revealed that LD calculations on DNA data
require approximately 7–9 times more operations than on
binary data, therefore significantly increasing the fraction
of time required for LD calculations in comparison to ω

calculations.
Furthermore, standard neutral simulated datasets, i.e.,

datasets of neutral SNPs from constant-size populations,
typically show a more homogeneous SNP density than
datasets with selection, because the area near selec-
tion is characterized by reduced amount of polymor-
phism as predicted by the selective sweep theory [2].
Such SNP imbalance between genomic regions trans-
lates to imbalance between individual per-thread execu-
tion times under the coarse-grained model. Additionally,
the shape of the dataset (sample size and total num-
ber of SNPs) has a major effect on the computation-to-
synchronization ratio of the available parallel algorithms,
leading to significant performance deviations for the same
number of threads, particularly as the number of threads
increases.
The proposed generic algorithm distributes the compu-

tational load to so-called ‘compute groups’ without taking
the borders of each genomic region into strict consider-
ation. This leads to a small number of large monolithic
blocks of computations that are organized into compute
groups of equal size in terms of number of operations.
Therefore, the proposed parallel algorithm achieves bal-
anced load distribution to the threads regardless of the
number of SNPs per candidate genomic region. Addi-
tionally, the generic offload-compute approach leads to
reduced synchronization overhead in comparison with
the previous parallel algorithms, which achieves high

performance when the number of threads increases, even
when small datasets are analyzed. The offload-compute
paradigm implemented in OmegaPlus is inspired by
typical hardware-based acceleration systems where fre-
quent communication/synchronization between a host
processor and the hardware accelerator is reduced (if
not eliminated) and the computational blocks are ide-
ally of the same size in order to achieve high system
performance.

Related work
Major advancements on modeling and statistical analy-
sis for population genetics have been reported in the past
15 years [21–24]. However, high performance computing
(HPC) remained largely underdeveloped before the NGS-
driven data explosion, because of the limited amount
of available population genetics data. More recently, the
increasing number of sequenced genomes triggered the
release of several software tools.
Pfeifer et al. [25] released PopGenome, an R package

for population genetic analyses that can compute a wide
range of statistics, infer parameters, and perform simula-
tions. These can be applied to whole-genome SNP data
and can exploit multiple cores for faster execution. A func-
tion is provided that calculates LDmeasurements for each
pair of SNPs in a dataset, but a full implementation of the
ω statistic is not available.
A variety of studies have focused on method devel-

opment for selective sweep detection. Kim and Stephan
[21] developed a composite maximum likelihood (ML)
framework to detect selective sweeps based on empiri-
cal mutation frequencies of SNPs. This framework was
adapted by Nielsen et al. [22] in the open-source software
SweepFinder, which could analyze whole-genome datasets
for a relatively small number of individuals. SweepFinder
cannot exploit multiple cores and therefore has long exe-
cution times for genome-size analyses. Also, it cannot
analyze alignments comprising more than 1,024 indi-
viduals. Pavlidis et al. [26] released SweeD, which uses
the same maximum likelihood calculation core as the
SweepFinder tool [22]. SweeD has a significantly faster
sequential implementation and an efficient parallel algo-
rithm. Also, SweeD can analyze alignments comprising
tens of thousands of sequences. Additionally, a check-
pointing mechanism allows to resume long-running anal-
yses after system failures or queue timeouts on cluster
systems.
Kim and Nielsen [18] described the LD signature of

a selective sweep and introduced a ML framework and
the ω statistic to detect selective sweeps based on LD.
Pavlidis et al. [27] implemented the ω statistic and com-
bined it with the approach proposed by Nielsen et al. [22]
in a machine learning environment to improve the accu-
racy of the detection process. However, the complexity of
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the ω statistic implementation made the machine learning
approach computationally infeasible on large datasets.
Alachiotis et al. [17] introduced a dynamic programming
(DP) algorithm for the efficient calculation of the ω statis-
tic on large datasets and released the parallel software
OmegaPlus, making the detection of selective sweeps on
whole-genome MSAs with thousands of sequences feasi-
ble in a reasonable amount of time. The following section
describes theω statistic and presents themain algorithmic
optimizations in OmegaPlus.

The LD pattern of selective sweeps
LD is used to capture the non-random association of
states between different SNPs. The level of LD can be
quantified by a multitude of statistics. The most widely
usedmeasure of LD is the coefficient of linkage disequilib-
rium, DLD [28]. Assuming the infinite site model (binary
data), the DLD coefficient is defined as DLD = pij − pipj,
where pij is the frequency of haplotypes that have the state
‘1’ in both SNPs i and j, pi is the frequency of haplotypes
that have ‘1’ in SNP i, and pj is the frequency of haplo-
types that have ‘1’ in SNP j. Given that the range of DLD
depends on the frequencies of the states, normalizedmea-
sures of LD are typically preferred. In this manuscript,
we use the squared correlation coefficient between sites
i and j, r2ij = D2

LD/(pi(1 − pi)pj(1 − pj)), which always
assumes values between 0 and 1. If state ‘1’ of SNP i is
always associated with state ‘1’ of SNP j, then r2ij will be
1. On the other hand, if state ‘1’ of SNP i is associated
with both states ‘1’ and ‘0’ of SNP j, then r2ij will be lower
than 1.
Figure 1 shows the generation of SNP patterns that can

be used for selective sweep detection. It comprises four
MSA snapshots of a population at different times. Open
circles represent neutral mutations and filled circles indi-
cate a beneficial mutation. Snapshot A is the oldest while
snapshot D is the most recent. At some point in time,
a beneficial mutation occurs in the population (snapshot
B). Because this mutation is beneficial, the frequency of
occurrence will increase (snapshot C), and eventually all
individuals will have it (snapshot D). The LD between
pairs of SNPs on the left- and right-hand side of the
selective sweep is high, while LD between SNPs that are
located on different sides of the beneficial mutation is low.
A detailed explanation of the mechanisms that drive the
generation of such SNP patterns near the site of selec-
tion is out of the scope of the present work. An excellent
introduction into the evolutionary processes can be found
in [29].
To compute the ω statistic, assume a total of N sam-

ples and a genomic region of W SNPs that is split into a
left (L) and a right (R) subregion with l and W − l SNPs,
respectively. We represent the states of the input data
with S, where SDNA : {A,C,G,T} refers to DNA data and

SBIN : {0, 1} represents binary data. Initially, all r2sisj values
are calculated as follows:

r2sisj =
(
psisj − psipsj

)2
psipsj

(
1 − psi

) (
1 − psj

) , (1)

where si, sj ∈ S, psi is the number of si states in SNP i
divided by the total number of states N, psj is the number
of sj states in SNP j divided by the total number of states
N, and psisj is the number of sisj pairs of states divided by
the total number of pairs of states N. If S = SBIN , i.e., the
input data are in binary format, then r2ij = r2sisj . For DNA
input data, r2ij is calculated as follows, according to [30]:

r2ij = (vi − 1)(vj − 1)vij
vivj

∑
si,sj∈S

r2sisj , (2)

where vi is the number of existing states in SNP i (vi ≤ 4),
vj is the number of existing states in SNP j (vj ≤ 4), and
vij is the number of valid pairs of states (si, sj ∈ S, i.e.,
not alignment gaps). The ω statistic is then computed as
follows:

ω =
(( l

2
) + (W−l

2
))−1 (∑

i,j∈L r2ij +
∑

i,j∈R r2ij
)

(l(W − l))−1 ∑
i∈L,j∈R r2ij

. (3)

The area between the left and the right subregions
is considered as the center of the selective sweep. The
ω statistic quantifies the extent to which average LD is
increased on each side of the selective sweep (numerator
in Eq. 3) but not across the site of selection (denomina-
tor in Eq. 3). In subgenomic regions, i.e., candidate regions
of limited length (usually some thousands of bases long),
the ω statistic is computed at each interval between two
SNPs as shown in Fig. 2. The length of the genomic region
is based on a parameter provided by the user. The calcu-
lations aim to find the l that maximizes ω by evaluating
Eq. 3 for all possible subregions that lie within the borders
of the candidate region.
A grid of equidistant locations Li, 1 < i < D is con-

structed based on the length of the input dataset. The
parameter D is defined by the user. For each genomic
region (centered at Li), the ω statistic is evaluated inde-
pendently. OmegaPlus initially computes a lower trian-
gular matrix M of the squared correlation coefficients
r2ij between all SNPs i and j. Thereafter, a dynamic pro-
gramming (DP) algorithm is used to calculate

∑
i∈L,j∈R r2ij.

Given a total ofW SNPs in the genomic region, the matrix
M of sizeW (W − 1)/2 is updated as follows:

Mi,j =

⎧⎪⎪⎨
⎪⎪⎩

0 1 ≤ i ≤ W , j = i
r2ij 2 ≤ i ≤ W , j = i − 1
Mi,j+1 + Mi−1,j−
Mi−1,j+1 + r2ij 3 ≤ i < W , i − 1 > j ≥ 0.

(4)
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Fig. 1 A selective sweep in a population. a Neutral mutations (open circles). b A beneficial mutation (filled circle) occurs. c The frequency of the
beneficial mutation increases. d All individuals have the same mutation. The regions on the left and the right side of the selection site (dashed
squares) comprise pairs of SNPs with high LD values. Pairs of SNPs on different sides have low LD

Thereafter, all
∑

i∈L,j∈R r2ij,
∑

i,j∈L r2ij, and
∑

i,j∈R r2ij values
required by Eq. 3 are retrieved fromM.
Typically, the number D of locations Li, 1 < i < D, is in

the order of thousands. This frequently leads to extended
overlapping areas between neighboring genomic regions.
To avoid redundant calculations in such cases, OmegaPlus
uses a data-reuse optimization. Given a matrix Mi that

corresponds to the genomic region Li, the matrix Mi+1
is calculated in two steps. First, values from the lower
n rows of Mi are copied to the higher n rows in Mi+1,
where n is the number of SNPs in the common region
between genomic regions Li and Li+1. Thereafter, the
remaining rows inMi+1 are calculated. This optimization
can achieve up to an order of magnitude faster overall

Fig. 2 Two consecutive calculations of theω statistic at the center (thick vertical line) of a subgenomic region, as defined by the left and right borders.
The dashed squares show the SNPs that are included in each calculation step. Note the additional SNP in the right dashed square in step n + 1
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execution, depending on the number of genomic regions
and the extent of the overlaps [17].

Findings
Parallel algorithms for the ω statistic
Fine-grained algorithm (OmegaPlus-F)
The fine-grained parallel approach deploys all threads for
the analysis of the same candidate genomic region, fol-
lowing the steps in Fig. 3a. Before the analysis of a new
region, the master thread checks whether the data-reuse
optimization can be applied. If the regions are not over-
lapping, thematrixM is fully calculated by parallel threads
and filled with the new squared correlation coefficients.
If there is overlap, the master thread copies the common
values to the appropriate locations for the new region and
only a part of M is calculated in parallel. Thereafter, the
master thread applies the DP algorithm (Eq. 4) to update
M with the summation values required by Eq. 3. The final
step for the analysis of a region entails the parallel cal-
culation of the ω statistic, with each thread computing ω

independently for different l values (see Eq. 3).
A major issue with the performance of the straightfor-

ward fine-grained approach lies in the fact that all threads
analyze a single genomic region: when the number of
sequences is small (up to the order of thousands), the com-
putation of squared correlation coefficients is relatively
fast compared to the thread synchronization overhead.

When the sample size increases, the computation-to-
synchronization ratio improves because the calculation of
the squared correlation coefficients requires more opera-
tions. Nevertheless, the frequent synchronization events
and the small (because of the data-reuse optimization)
number of squared correlation coefficients that need to
be calculated for each genomic region do not allow for
efficient parallel execution unless the sample size is in
the order of tens of thousands. Consequently, the coarse-
and multi-grained alternatives typically outperform the
fine-grained approach.

Coarse-grained algorithm (OmegaPlus-C)
Unlike the fine-grained algorithm, the coarse-grained
scheme (Fig. 3b) organizes the entire dataset into larger
regions and assigns a different region to each thread,
which carries out all ω statistic operations in that region
sequentially. Each region comprises an equal number of
candidate genomic regions, thus eliminating the need for
synchronization during the analysis. Threads synchro-
nize only once, to determine whether the analysis of all
assigned regions is completed.
The coarse-grained approach benefits the most from

the data-reuse optimization because all squared correla-
tion coefficients are calculated by a single thread. How-
ever, the coarse-grained assignment of large regions to
parallel threads suffers from imbalanced load distribution

a b c
Fig. 3 The algorithmic steps of three parallelization strategies in OmegaPlus. a The fine-grained approach to calculate one ω location; b the
coarse-grained approach executed by each thread to analyze a genomic region; c the new parallel algorithm to compute a number k of ω locations.
The wavy arrows indicate execution by multiple threads
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because, although each region consists of the same num-
ber of candidate genomic regions, each individual region
that is scanned for selection contains a different number
of SNPs.

Multi-grained algorithm (OmegaPlus-M)
Themulti-grained algorithm attempts to alleviate the load
imbalance in the coarse-grained approach via a more
intelligent assignment of threads to regions. Initially, the
algorithm is similar to the coarse-grained scheme because
each thread is assigned a large region of equal size (num-
ber of candidate genomic regions) and carries out all
required operations independently. When a thread fin-
ishes processing its initial region, themaster thread, which
has been monitoring the progress that each thread has
made with the assigned region, dynamically decides which
region the available thread must be reassigned to. Then,
the selected region starts being analyzed by multiple
threads following the fine-grained algorithm while the
other regions continue being analyzed by one thread each.
Depending on the overall progress in the regions, the
master thread periodically reassigns threads to another
region in order to achieve a balanced distribution of the
remaining computational load at each particular time.
While the multi-grained scheme typically outperforms

the coarse-grained algorithm, as more threads enter the
fine-grained processing mode, the computational load
per thread decreases and the synchronization overhead
increases. Thus, the load distribution to the threads and
the overall execution time for an analysis are still affected
by the different number of SNPs in the regions.

Generic parallelization (OmegaPlus-G)
Data layout
Initially, the input alignment is stored in an array of 32-bit
unsigned integers by grouping 32 elements at an align-
ment site (0,1 for binary data, andA,C,G, T for DNAdata)
in each unsigned integer and placing SNPs contiguously
in the array, as shown in Fig. 4. In addition to reducing
memory footprint, such a compact representation of SNPs
facilitates the population count operation required to cal-
culate the squared correlation coefficient between SNPs.
Thereafter, the SNPs are organized into SNP groups of
sizeG, whereG is a granularity factor that affects the ratio
of computation to synchronization among the threads.
Figure 4 also illustrates the arrangement of SNPs into
groups for a genomic region that comprises N SNPs. The
value of G is a constant that was set to 128, based on
an experimental evaluation of the effect of G on the total
execution time. In a series of runs with G values rang-
ing from 8 to 1,024, a significant performance degradation
was observed for values smaller or larger than the cho-
senG. SmallG values reduce the number of computations
between synchronization events and increase the retrieval

time of the computed values during the final ω calcula-
tions. On the other hand, large G values lead to execu-
tion time imbalance among the threads because of very
coarse-grained load distribution, and several redundant
computations between very distant SNPs. SNPs are placed
in groups based on their alignment site index to facilitate
the application of the proposed algorithm directly on the
data layout of the standard OmegaPlus implementation.

Parallel algorithm
The underlying idea of the proposed algorithm is to max-
imize the number of calculations in the parallel sections
of the code while each thread performs computations on
fractions of genomic regions. The algorithmic steps are
outlined in Fig. 3c. Initially, a total of T available SNP
groups is assumed. The value of T is calculated from
a user-defined parameter that provides an upper limit
for the memory overhead induced by the proposed algo-
rithm. As previously mentioned, the SNP-group size G
is fixed to 128 for performance purposes. Consequently,
each genomic region frequently extends to several SNP
groups. Therefore, for a given number T of SNP groups,
the calculation of the ω statistic is possible at only a lim-
ited number of locations Li, 1 < i < k � D, where
D is defined by the user. The borders of the respective k
genomic regions are then analyzed to assemble a ‘compute
list’. Each item in the list is a ‘compute group’. Because of
possible overlaps between neighboring genomic regions,
a data reduction operation on the compute list eliminates
double entries that would otherwise have led to redundant
computations.
A compute group operates on a distinct pair of SNP

groups x and y that belong to the same genomic region,
as illustrated by the square tiles in Fig. 5. Initially, a kernel
function that calculates the squared correlation coeffi-
cient r2ij for a pair of SNPs i and j with i ∈ x and
j ∈ y is invoked G2 times. If x = y, the kernel func-
tion is invoked G2/2 times (compute groups 0, 2, and 4
in Fig. 5) to avoid redundant calculations. When the r2ij
calculations are finished, a tile-aware version of the DP
algorithm (Eq. 4) is applied. A data dependency result-
ing from the DP algorithm imposes a corresponding tile
dependency. Therefore, only the compute groups that
belong to the same diagonal can be calculated in paral-
lel, and each diagonal can be processed only after the one
directly above is computed. In Fig. 5 for instance, com-
pute groups 0, 2, and 4 represent the first diagonal that
can be calculated in parallel. Thereafter, the next diagonal,
comprising compute groups 1 and 3, can be calculated in
parallel.
The final stage of the proposed parallel algorithm entails

the ω statistic calculation at k locations Li, 1 < i < k,
where k is calculated based on the available number
of SNP groups T. For this, we modified the standard
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Fig. 4 All N SNPs in a subgenomic region are mapped to distinct locations in SNP groups of size G. Assuming 32-bit unsigned integers and S
sequences, each SNP occupies t integers (ceiling of S sequences divided by 32). Each SNP is placed in a SNP group based on it’s location i in the
subgenomic region, where f is the index of the first SNP in the subgenomic region of N SNPs

OmegaPlus function that computes the ω statistic at
each location Li to retrieve the

∑
i∈L,j∈R r2ij,

∑
i,j∈L r2ij,

and
∑

i,j∈R r2ij values from the tiled output data. There-
after, all Li locations are distributed to so-called omega
queues based on the total number of SNPs in each queue.
When all Li locations are inserted into an omega queue,
each queue comprises approximately the same number
of SNPs. Therefore, by maintaining a queue per thread
we achieve improved load balance for the final ω statistic
calculations.
The above-mentioned steps are repeated until all loca-

tions Li, 1 < i < D, are analyzed. Figure 6 illustrates an

example of output tiled data for an arbitrary iteration of
the algorithm, the corresponding M matrices, and the ω

locations that can be calculated. Each iteration assumes a
different set of T SNP groups (T = 6 in Fig. 6) and com-
putes the next k locations in the input dataset (k = 4 in
Fig. 6). Note that, although T (number of SNP groups) is
constant among iterations of the algorithm (it relies only
on the available memory resources on the workstation),
the actual number k of Li locations that can be calculated
might vary because of variances in the SNP density among
genomic regions. As already mentioned, each genomic
region extends to several SNP groups. Therefore, SNP

Fig. 5 Two neighboring subgenomic regions Li and Li+1 organized into three SNP groups and the respective compute list that comprises five
compute groups
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Fig. 6 Example of the tiled LD data for an arbitrary iteration of the
generic algorithm along with the corresponding per-regionM
matrices and the ω locations that can be calculated. Here, the
number of SNP groups is T = 6, the pairwise combination of which
leads to the tiled matrixM that comprises 16 tiles (missing tiles
correspond to distant SNPs, as determined by the −maxwin
user-defined argument, and therefore are not computed). The
corresponding number of ω locations that can be calculated in this
iteration is k = 4, i.e., Li to Li+k−1

regions with an increased number of SNPs, for instance,
will occupy a proportionally increased number of SNP
groups, leading to a smaller number k of Li locations that
can be computed based on the available T SNP groups.

Implementation and usage
The generic algorithm is implemented in the OmegaPlus
Linux release version 3.0.0 (available for download at
[31] and [32]) using the OpenMP application program-
ming interface (API) for parallel programming. All pre-
vious parallel implementations used the POSIX standard
for threads, a low-level API that was required to imple-
ment the multi-grained algorithm that exploits both the

fine- and the coarse-grained alternatives. However, the
simplicity of the code for the generic algorithm allowed
deployment of the more portable OpenMP API because
the computational kernel is implemented via two main for
loops, one to traverse all tile diagonals in the tiled matrix
M to process the compute list and one to compute all
omega queues.
To generate the OmegaPlus-G executable that imple-

ments the generic parallel algorithm, one can use the
respective makefile (Makefile.OPENMP.GENERIC.gcc).
A typical analysis requires at least five input arguments:
(i) a name for the run (-name), (ii) an input file (-input),
(iii) the number of ω locations (-grid), and (iv) a mini-
mum (-minwin) and a maximum (-maxwin) border value
to specify the width of each candidate genomic region.
The generic algorithm requires an additional argument
that is provided via the -memLimit command line flag
and represents an upper bound for the memory overhead.
The roles of the minimum and maximum border values
for the processing of genomic regions are illustrated in
Fig. 7.
Regardless of the chosen OmegaPlus algorithm, all runs

generate a report that contains locations in the genome
(at the center of each evaluated region) and the cor-
responding ω scores. To assess whether the reported
OmegaPlus scores are indicative of a selective sweep, a
threshold calculation step is required to determine the
critical OmegaPlus value. All regions that are scored
higher than the critical value are candidates for a selective
sweep.
Threshold calculation is based on the definition of

p-value: the probability of observing equal or higher
value than the maximum observed OmegaPlus value
given that the null hypothesis is true. The null hypoth-
esis is represented by a neutral model that incorporates
an appropriate demographic scenario. In other words,
if the demographic model is known, neutral datasets

Fig. 7 The roles of−minwin and−maxwin. The user defines the length ofminwin (number of bases). This is the minimum region on the left or on the
right of a given location that a sweepmight affect. For example, for−minwin 1000, the SNPs located at least at a distance< 1,000 bp (1,000 bp on the
right, and 1,000 bp on the left) from each grid point will contribute to the calculation of ω value. In this figure, the first ω value that will be calculated
(its position is denoted as ‘location to assess omega’) will include three SNP positions on the left and three SNP positions on the right. Subsequently,
OmegaPlus will gradually include in the calculations all SNPs on the left and right subregions one after the other until the ‘Max left’ and ‘Max right’
borders are reached. ‘Max left border’ and ‘Max right border’ are defined by themaxwin flag. For this position, the highest ω value is reported
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are generated via simulations incorporating the demo-
graphic model. For each simulated dataset, the maximum
OmegaPlus value is calculated, and the threshold value
is defined as the 95th percentile of all maxima. In prac-
tice, however, this approach requires two problems to be
resolved: i) the demographic model is usually unknown,
so it needs to be estimated, and ii) if the region under
study and the recombination rate are large, simulating
neutral datasets becomes challenging. Several approaches
exist for the estimation of the demographic model (e.g.,
the approximate Bayesian computation, ABC; [33]) and
the simulation of neutral datasets (e.g., Hudson’s ms [34]
and msms [35] for full coalescent models, or MaCS [35]
for approximate coalescent models). As an alternative to
simulating neutral datasets, which might be computation-
ally expensive, one may assume that the vast majority
of the dataset under investigation is neutral. This allows
to estimate the threshold value by considering the 95th
percentile of the OmegaPlus values calculated from the
analysis of the specific dataset, an approach that is usually
followed for the analysis of whole-genome datasets.

Performance
Experimental setup
To assess the performance of the parallel algorithms for
LD-based selective sweep detection, we use the open-
source software CoMuS (Coalescent of Multiple Species;
[36]) to generate a series of datasets in a variety of shapes,
with sample size m and number of sites k, where m = (100,
1,000, 10,000, 50,000) and k = (10,000, 50,000, 100,000).
In contrast to Hudson’s ms [34], CoMuS implements the
finite site model, therefore it generates DNA sequence
data. The sample size varies from 100 to 50,000 because
our goal is to test the new parallel algorithm inOmegaPlus
for relatively small datasets that are currently widely used,
and for very large datasets that will become available in
the future. For the number of sites, we use values from
10,000 to 100,000. Such a number of sites corresponds
to a genomic region, i.e., it is smaller than chromosomal
sizes. Simulating longer DNA sequences becomes pro-
hibitively expensive both in terms of computational time
and memory requirements, because of the large amount
of recombination.
We use a workstation with four Intel Xeon X7560 8-

core Nehalem-EX processors running at 2.26 GHz and
128 gigabytes of main memory, as a test platform. All par-
allel OmegaPlus algorithms are evaluated for scalability
with runs of 4, 8, 16, and 32 threads. For all runs, the -grid,
-minwin, and -maxwin arguments are set to 5,000, 1,000,
and 20,000, respectively. Therefore, all analyses compute
the ω statistic at 5,000 locations along the input dataset
with the minimum and the maximum sizes of the candi-
date genomic regions set to 1,000 and 20,000 alignment
sites, respectively.

Typically, the number of candidates for selection
genomic regions that should be evaluated in an input
dataset should be proportional to the width of the dataset,
i.e., the number of alignment sites. Although this is gener-
ally valid for real-world analyses, it would create a bias in
our scalability evaluation experiments. Changing the -grid
argument according to the number of sites k in the input
datasets will maintain the number of SNPs in each region
and the overlap between neighboring regions approxi-
mately constant, while the shape of the datasets will vary
significantly. Therefore, the runtime comparisons will not
capture the effect of the size of candidate regions and the
extent of the overlaps.

Simulated datasets
Initially, we evaluate the scalability of the parallel algo-
rithms on simulated datasets. Figure 8 shows the observed
speedups.
As can be observed in the plots, the coarse- and

multi-grained approaches show poor performance for
limited number of sites (k = 10,000) achieving maxi-
mum speedups of 8.8X and 9.3X on 32 cores, respec-
tively. This results from the small number of SNPs per
group of regions, which decreases as the number of
threads increases, leading to unfavorable computation-to-
synchronization ratios. The fine-grained and the generic
algorithms achieve speedups of up to 19.3X and 22.6X on
32 cores, respectively. Consequently, the fine-grained and
the generic algorithms outperform the coarse- and multi-
grained alternatives, showing even superlinear speedups
for small sample sizes (up to 1,000) and numbers of
threads (up to 8) because of the efficient exploitation of
the cache hierarchy. For instance, when processing the
DNA dataset with 100 sequences and 10,000 alignment
sites (approximately 5,000 SNPs; bottom left of the figure),
OmegaPlus allocates 64 bytes per SNP (4 unsigned inte-
gers per DNA state), allowing the loading of nearly 512
SNPs in L1 cache (32 kilobytes). Because all threads in
the fine-grained model analyze the same region and the
number of regions is large (-grid 5000), the majority of
SNPs that will be required for a large number of consec-
utive overlapping neighboring regions already reside in
L1 cache. The same cache effect is not observed for the
coarse-grained approach because each thread starts ana-
lyzing distant regions. Although each thread’s next region
contains several SNPs that already reside in L1 cache from
the analysis of the previous region, the actual number
of remaining regions that can benefit from SNPs in L1
cache is reduced proportionally to the number of parallel
threads. Furthermore, owing to extensive overlaps and the
small number of SNPs, a large number of redundant LD
calculations may occur as a certain number of overlapping
regions (at the borders of the region groups) are ana-
lyzed by different threads. The multi-grained approach
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Fig. 8 Speedups for the analysis of DNA datasets in different shapes. The sequential OmegaPlus implementation is take as reference for the
calculation of the speedups; F, C, M, and G correspond to the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively

outperforms the coarse-grained alternative and benefits
from the cache effect because threads dynamically switch
to the fine-grained model during processing. Finally, the
generic approach requires only 16 kilobytes of L1 cache
per compute group, leading to the efficient use of the
cache hierarchy during the analysis of the compute list
because the 2G SNPs (G is the granularity factor currently
set to 128) per compute group will reside in L1 cache
and be used in G2 pairwise LD calculations. However, as
the sample size increases the memory requirements per

SNP increase, the benefits from the cache hierarchy are
reduced (towards the top right in Fig. 8), and the fine-
grained approach outperforms the generic algorithm as
a result of a favorable computation-to-synchronization
ratio during the LD calculations.
Tables 1 and 2 provide execution times for DNA and

binary datasets, respectively. Note that all datasets gener-
ated by CoMuS contain DNA data in FASTA format. To
evaluate the performance of the parallel algorithms when
binary SNPs are analyzed, we use the -binary OmegaPlus
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Table 1 Execution times (in seconds) for the analysis of DNA datasets in different shapes

Sequences 100 1,000 10,000 50,000

Sites 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000

OP (1) 158 2,117 2,677 301 3,233 3,883 846 10,486 17,547 2,927 33,592 88,528

F (4) 37 1,143 1,381 61 1,256 1,687 184 3,160 5,011 744 9,438 23,798

C (4) 68 893 949 129 1,096 1,288 520 4,346 6,067 2,576 16,239 30,501

M (4) 43 710 811 95 896 1,135 479 3,626 5,358 2,518 13,172 27,399

G (4) 41 491 636 74 674 1,052 249 3,832 6,280 1,105 13,070 34,983

F (8) 19 790 1,008 34 898 1,136 95 1,880 2,843 394 4,924 12,610

C (8) 40 493 524 91 640 771 474 2,814 3,687 2,508 11,039 18,558

M (8) 27 411 463 70 539 676 450 2,467 3,351 2,458 9,623 17,063

G (8) 21 263 336 37 352 551 132 1,956 3,205 580 6,653 17,713

F (16) 10 649 809 19 700 867 53 1,255 1,812 223 3,003 6,922

C (16) 25 288 308 67 413 473 445 2,063 2,522 2,447 8,537 12,701

M (16) 20 247 270 58 370 428 432 1,953 2,355 2,429 8,114 11,882

G (16) 10 136 171 19 181 283 72 1,063 1,651 319 3,457 9,125

F (32) 9 599 745 16 632 748 46 1,094 1,450 152 2,405 4,009

C (32) 18 174 187 55 289 324 479 1,705 1,985 3,014 7,543 10,041

M (32) 17 168 190 50 286 313 440 1,674 1,999 2,782 7,897 9,566

G (32) 7 83 114 15 127 188 63 567 962 223 2,001 4,814

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively.
The number in parentheses is the number of threads

Table 2 Execution times (in seconds) for the analysis of binary datasets in different shapes

Sequences 100 1,000 10,000 50,000

Sites 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000 10,000 50,000 100,000

OP (1) 151 2,024 2,467 241 2,653 2,535 438 3,442 4,433 777 5,636 11,485

F (4) 39 1,238 1,480 67 1,313 1,569 135 1,664 2,009 252 2,364 4,380

C (4) 64 1,017 1,052 114 1,015 991 195 1,265 1,528 469 2,627 4,360

M (4) 40 701 861 69 796 889 151 1,099 1,398 401 2,205 4,008

G (4) 40 521 624 65 545 652 115 924 1,249 250 1,975 4,395

F (8) 19 795 1,011 32 838 1,002 53 1,012 1,214 134 1,438 2,684

C (8) 36 464 488 64 478 487 132 709 869 373 1,701 2,857

M (8) 23 379 423 41 408 445 105 638 813 335 1,483 2,681

G (8) 20 254 312 32 274 328 59 481 679 144 1,091 2,570

F (16) 10 652 808 17 675 828 33 834 975 97 1,250 2,250

C (16) 20 258 264 39 266 280 95 463 585 320 1,255 2,109

M (16) 16 222 243 30 233 250 84 429 549 306 1,198 2,021

G (16) 10 128 157 16 140 169 35 275 411 97 685 1,664

F (32) 9 598 699 15 623 743 31 764 860 84 1,066 1,919

C (32) 14 147 166 24 158 185 76 338 446 325 1,193 1,990

M (32) 16 137 165 22 161 173 77 337 446 313 1,133 2,064

G (32) 7 86 95 11 91 104 26 193 317 85 504 1,229

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the fine-grained, coarse-grained, multi-grained, and generic parallel algorithms, respectively.
The number in parentheses is the number of threads
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input argument, which enforces a deduction of the align-
ment to a binary representation before the analysis. The
execution time reduction for the same dataset can be con-
siderable as the dataset size increases. For instance, the
sequential analysis of the largest simulated dataset in our
experiments (m = 50,000 and k = 100,000) finished 7.7X
faster by activating binary deduction, reducing the total
analysis time from 24.6 hours to approximately 3 hours.
The maximum ω value calculated based on DNA data
was 1.281763 at location 99,973.78, whereas the respective
values based on binary data were 1.235877 and 99,993.78.
For moderate numbers of alignment sites such as k =

50,000 or k = 100,000, the generic parallel approach
achieves up to 25.5X speedup on 32 cores whereas the
fine-, coarse-, and multi-grained alternatives deliver max-
imum speedups of 22X, 16.8X, and 16.5X, respectively.
Overall, the generic algorithm shows consistent perfor-
mance on various different numbers of cores and is robust
to changes in the dataset shape. Furthermore, because of
the compute-list-based calculation of a significantly larger
number of LD values than the other approaches in a sin-
gle parallel region, the generic algorithm achieves good
performance even when many cores are used to analyze
datasets with limited sample size and number of SNPs.

Human Chromosome 1 from the 1000 genomes project
In addition to simulated datasets, we also evaluate the
parallel algorithms for the scan of a very large real-
world dataset, the Chromosome 1 of the human genome,
available for download from the 1000 Genomes Project
Consortium ([37], last accessed January 9, 2015). This
dataset is in VCF format, which is widely used in next-
generation sequencing projects, and contains the genetic
variation from 2,504 humans, i.e., the sample size to be
analyzed is 5,008 as a result of diploidy. The size of the
input file is 62 gigabytes and comprises 6,195,844 SNPs.
Similarly to previous performance comparisons, we con-
duct a performance evaluation of the parallel algorithms
with runs using 4, 8, 16, and 32 threads, analyzing the
input data from the VCF file as is, i.e., nucleotide data,
as well as binary data, by activating the binary deduction
optimization.
All runs compute the ω statistic at the center of 10,000

candidate regions (-grid) of minimum andmaximum sizes
of 1,000 (-minwin) and 200,000 (-maxwin) sites, respec-
tively. Table 3 contains execution times and Figs. 9 and 10
illustrate the respective speedups. Given the considerable
size of the input file (62 gigabytes), and so as to conduct
an accurate evaluation of the parallel algorithms, the time
required to load the file from the disk to main memory
is not included in the execution times and the calcula-
tion of the respective speedups. All parallel OmegaPlus
implementations use a single thread to load the input file
to main memory before the analysis, a task that required

Table 3 Execution times (in seconds) for the analysis of the
human Chromosome 1 (1000 Genomes project) conducting
calculations based on DNA and binary data

Algorithm (threads) DNA Binary

OP (1) 417,161 44,195

F (4) 108,850 14,057

C (4) 129,712 15,266

M (4) 107,326 12,667

G (4) 115,653 13,474

F (8) 55,025 8,712

C (8) 67,371 8,142

M (8) 54,663 6,992

G (8) 58,341 7,492

F (16) 27,853 5,884

C (16) 37,091 5,145

M (16) 28,316 4,135

G (16) 30,089 4,567

F (32) 17,683 4,911

C (32) 21,043 3,630

M (32) 15,395 2,971

G (32) 17,469 3,262

OP indicates the sequential OmegaPlus implementation; F, C, M, and G indicate the
fine-grained, coarse-grained, multi-grained, and generic parallel algorithms,
respectively

between 80 and 85 min for all runs. However, the time
required for the conversion of the nucleotide SNPs to
binary data (carried out by a single thread as well) is
included. This conversion required 24 min.
As expected, because of the increased sample size

and number of SNPs, all parallel algorithms show com-
parable performance and scale well as the number of
threads increases (Fig. 9). The coarse-grained approach
is the most prone to SNP density imbalance among
regions, which reflects the worse performance compared
with the rest of the algorithms. The large sample size
allows highly favorable computation-to-synchronization
ratio during the LD calculations of the fine-grained algo-
rithm, whereas the multi-grained parallelization, which
has the dynamic switching mechanism between the fine-
grained and coarse-grained approaches, achieves the best
performance because it benefits from both the efficient
fine-grained LD calculations and the balanced workload
per thread. Finally, because of the large number of SNPs in
the dataset and the significantly wide candidate regions,
the generic algorithm requires multiple offload-compute
iterations, while each iteration can compute only a lim-
ited number of ω locations, thus leading to slightly worse
performance than the multi-grained approach while out-
performing the fine-grained approach when 32 threads
are used.
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Fig. 9 Observed speedups for the analysis of the human
Chromosome 1 based on LD computations on nucleotide SNP data

The binary deduction optimization allows between 7X
and 9.4X faster execution, including the time required
to convert the DNA representation to binary (24 min).
However, all parallel algorithms show poor performance
as the number of threads increases (Fig. 10) because of
the significantly reduced computational load per pairwise
LD calculation. For binary analyses, the multi-grained and
the generic algorithms are typically faster than the fine-

Fig. 10 Observed speedups for the analysis of the human
Chromosome 1 based on LD computations on binary SNP data

and coarse-grained approaches because of the hybrid par-
allelization approaches used, which allow them to benefit
from both the coarse-grained execution and the balanced
computational load distribution to the threads, achiev-
ing favorable computation-to-synchronization ratios and
similar execution times per thread.
Converting each SNP from DNA to binary is a non-

deterministic process that leads to loss of information,
because all nucleotide SNPs are now represented by
binary vectors. Figure 11 illustrates the ω values that were
computed based on LD values calculated from nucleotide
SNPs (Fig. 11a) and binary data (Fig. 11b). The plots
appear almost identical and there are no obvious dif-
ferences in the ω statistic values calculated by the two
approaches throughout the dataset (OmegaPlus output
reports available as Additional file 1). In both plots, the ten
highest (i.e., 0.1 %) ω values are highlighted (red circles).
Both analyses detected the maximum ω value at posi-
tion 149,445,280, and the leftmost and rightmost SNPs
in the region that showed the maximum ω were at posi-
tions 149,433,322 and 149,448,635, respectively.When the
SNP data were analyzed as DNA, the maximum ω value
was 396,171.53, whereas when the SNPs were converted
to binary the maximum ω value was 391,617.78. Note,
however, that the sequential DNA analysis required 117.2
hours whereas the binary analysis finished in just 13.6
hours.
The main goal of the Chromosome 1 runs is to com-

pare the scalability of the parallel algorithms and to assess
the efficiency of the OmegaPlus binary-based analysis in
terms of both execution time and accuracy on a large,
real-world dataset. Consequently, using the full dataset
of Chromosome 1, we do not aim to detect selective
sweeps or discuss the biological significance of the find-
ings because the entire dataset represents a mixture of
several populations, thus violating certain assumptions
of OmegaPlus and neutrality tests in general. However,
we analyzed each population separately to demonstrate
the usage of OmegaPlus on subsets of the entire dataset.
Given that this analysis is biologically meaningful and
may provide information related to local adaptation, the
OmegaPlus output reports are available for download
in Additional file 2, and the scores along Chromosome
1 for each population are plotted in Additional file 3.
Furthermore, for each pair of populations, we calcu-
lated the Spearman correlation coefficient between their
OmegaPlus scores to generate the heatmap that is shown
in Fig. 12. The heatmap demonstrates that more closely
related populations are more similar in terms of patterns
of their OmegaPlus scores. This finding probably reflects
the more extensive coancestry of more closely related
populations (e.g., African populations) compared with
more distant populations (e.g., African versus European
populations). Alternatively, it might represent common
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a

b

Fig. 11 Illustration of the ω values reported by OmegaPlus for the analysis of the human Chromosome 1. a SNPs interpreted as nucleotide data
(processed as is from the VCF file); b SNPs represented as binary vectors (-binary option). In both plots, the 10 highest ω values are highlighted. The
DNA analysis took between 7 and 9.4 times longer than the binary analysis

selective pressures between related populations. Further
examination is required, which, however, is beyond the
scope of this work.

Comparisonwith other neutrality tests
A recent study by Crisci et al. [38] assessed the perfor-
mance of various implementations, including OmegaPlus,
to detect selection for different biologically relevant sce-
narios such as population size changes. The findings
revealed that, in terms of power to reject the neutral
hypothesis under both equilibrium and non-equilibrium
conditions, OmegaPlus outperforms all alternative imple-
mentations considered in the study, i.e., SweepFinder [22],
SweeD [26], and iHS [39]. As a complementary com-
parison, we conduct here a performance evaluation of
these tools in terms of analysis time. For this compar-
ison, we use Hudson’s ms [34] to generate simulated
datasets with sample size m = (100, 1,000) and number
of sites k = (10,000, 100,000). Table 4 presents exe-
cution times for sequential and parallel runs with 32
threads.
As can be observed in Table 4, OmegaPlus outper-

forms all other tools for both the sequential and the
parallel runs. Such a comparison is useful for choosing
which software to deploy, particularly for large datasets.

However, these tools are fundamentally different, in terms
of both the methods they implement and/or the type
of selective sweeps they detect. For instance, SweeD
and SweepFinder rely on the composite likelihood ratio
and detect complete selective sweeps (OmegaPlus also
detects complete selective sweeps) by analyzing the site
frequency spectrum (SFS). However, they require a sig-
nificantly larger number of floating-point operations than
OmegaPlus. Further, the iHS algorithm of the selscan
[40] software uses extended haplotypes to detect ongoing
(incomplete) selective sweeps.

Sensitivity and specificity
Experimental setup
To assess the sensitivity and accuracy of OmegaPlus, we
use Hudson’s ms and mssel tools to generate neutral
datasets and datasets with selection, respectively. Both
tools perform coalescent simulations with past demo-
graphic changes. Given the trajectory of a beneficial muta-
tion, mssel simulates datasets under the simultaneous
effect of demography and positive selection. The trajec-
tory of the beneficial mutation is constructed using the
same demographic model as the polymorphic dataset that
it generates. A total of 1,000 replications was performed
for each of the demographic models described in Table 5.
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Fig. 12 A heatmap of the 26 populations in the 1000 Genomes dataset for Chromosome 1. The similarity matrix was calculated using the Spearman
correlation coefficient between the OmegaPlus scores of different populations. Light yellow indicates higher similarity (higher Spearman correlation
coefficient); red indicates less similarity. Populations that are more closely related tend to cluster together. Population abbreviations: ACB, African
Caribbeans in Barbados; ASW, Americans of African Ancestry in SW USA; BEB, Bengali from Bangladesh; CDX, Chinese Dai in Xishuangbanna, China;
CEU, Utah Residents (CEPH) with Northern and Western European Ancestry; CHB, Han Chinese in Beijing, China; CHS, Southern Han Chinese; CLM,
Colombians from Medellin, Colombia; ESN, Esan in Nigeria; FIN, Finnish in Finland; GBR, British in England and Scotland; GIH, Gujarati Indian from
Houston, Texas; GWD, Gambian in Western Divisions in the Gambia; IBS, Iberian Population in Spain; ITU, Indian Telugu from the UK; JPT, Japanese in
Tokyo, Japan; KHV, Kinh in Ho Chi Minh City, Vietnam; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone; MXL, Mexican Ancestry from Los
Angeles USA; PEL, Peruvians from Lima, Peru; PJL, Punjabi from Lahore, Pakistan; PUR, Puerto Ricans from Puerto Rico; STU, Sri Lankan Tamil from the
UK; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeria

The bottleneck models 1–4 were used for the compari-
son between OmegaPlus and a series of summary statis-
tics. Additional simulations (bottleneck models 1–7) were
used to demonstrate the effect of the -minwin parameter
of OmegaPlus. The command lines for both ms and mssel
tools are provided in Additional file 4.

The total length of each simulated genome is assumed
to be 1,000,000 bp. The length value is arbitrary, because
ms and mssel adopt the infinite site model; it is used only
to allow the illustration of the results in a similar way to
real datasets (whose size is finite). The genome was split in
1,000 overlapping windows of length 10,000 bp each. The

Table 4 Execution times (in seconds) for the analysis of simulated datasets using OmegaPlus, SweeD, SweepFinder, and selscan (iHs)

Sequences SNPs Threads OmegaPlus SweeD SweepFinder Selscan (iHS)

100

10,000
1 5.7 124.7 540.4 858.5
32 0.7 4.7 – 38.6

100,000
1 652.9 1,169.0 4,138.1 57,996.9
32 21.7 36.3 – 2,442.1

1,000

10,000
1 7.1 283.5 132,938.2 37,340.9
32 1.3 60.6 – 1,428.8

100,000
1 753.1 1,345.5 135,996.3 433,811.2
32 28.8 74.7 – 14,834.2

The generic algorithm is used for the parallel execution of OmegaPlus. SweepFinder does not use multiple threads
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distance between the starting points of two consecutive
windows (offset) is 1,000 bp. Several summary statistics
were evaluated at each window, for both the neutral and
the selection dataset. To set the significance threshold
for each summary statistic, we performed a parametric
bootstrapping procedure that is often used in selection
scans [22]: for a given demographic model (e.g. bottle-
neck1), we calculated the minimum value of each sum-
mary statistic among the sliding windows. We conducted
1,000 replications for each demographic model, obtaining
1,000 minimum values for each summary statistic. The
significance threshold of each summary statistic was set
as the 5th percentile of its minimum values. Given that we
consider only the minimum values for the calculation of
the threshold value (i.e., the minimum value per replica-
tion), there is nomultiple testing problem that could result
from the number of windows.

Comparisonwith summary statistics
Nowadays, several methods (neutrality tests) exist for
detecting selective sweeps. The majority of such tests
are simple summary statistics whose value is different
between genomic regions that have experienced a selec-
tive sweep and regions that are located far away from
a selective sweep. Some of them, for example, Tajima’s
D [41], Fu & Li D∗ [42], and H′ [43], use information
from the site frequency spectrum. A second class of tools,
such as Hudson’s C [44] and Depaulis and Veuille K &
H [45], use information that is mostly related to link-
age disequilibrium or the polymorphism level. Finally,
there are statistics, for example, θπ [46], whose value is
based only on the polymorphism level. We compared
OmegaPlus with the following statistics: (i) θπ , (ii) H′, (iii)
Tajima’s D, (iv) Fu & Li D∗, (v) Fu & Li F∗ [42], (vi) Depaulis
and Veuille (1998) H, and (vii) Hudson’s C statistic. θπ

measures the level of nucleotide diversity by calculat-
ing the average number of pairwise differences between
sequences, thus it is expected to be low in windows nearby

a selective sweep. The H′ statistic is defined as H′ =
(θπ − θH)/Var(θπ − θH), where θH [47] is an estimator
of the θ = 4Nμ parameter (μ is the mutation rate per
site per individual) based on the site homozygosity. H′
assumes low values in the proximity of a selective sweep.
Tajima’s D measures a normalized difference between θπ

and Watterson’s θW [48] and assumes low (negative) val-
ues in the proximity of a selective sweep. The same is true
for Fu& Li D∗ and Fu& Li F∗. Depaulis and Veuille Hmea-
sures the haplotype heterozygosity, thus it also decreases
nearby a selective sweep. Finally, Hudson’s C is an esti-
mate of the population recombination rate rho = 4Nc,
where c is the recombination rate per bp per individual.
The estimate is based on the variance of the site frequen-
cies. Thus, its value mostly depends on the level of LD
and assumes low values in the proximity of a selective
sweep.
We compared the sensitivity and the specificity of these

tools to detect selective sweeps for various demogra-
phic models. As sensitivity, we define the percentage of
the replications of each model with selection in which
the value of the neutrality test was more extreme than
the threshold value. As specificity, we calculate the dis-
tance between the reported selective sweep region and the
true target of selection. We tested the performance of the
neutrality tests on several demographic models (model
parameters are provided in Table 5; the command lines
can be found in Additional file 4). The first model is a
constant population size model. For all summary statis-
tics, even the very simple ones, such as θπ , both sensitivity
and specificity are high (Fig. 13). Sensitivity and speci-
ficity are similarly high for mild bottlenecks as well. For
example, for bottleneck2, in which the population size
during bottleneck becomes half of the present population
size, θπ and Depaulis and Veuille H can identify approx-
imately 67% of the sweeps. On average, the sweep loca-
tions reported by these tools were 38 kb and 44 kb away
from the true target of selection, respectively. All other

Table 5 Parameter values of the simulations

Demographic model Beginning time of
bottleneck

Ending time of
bottleneck

Relative population
size during bottleneck

Relative population
size after bottleneck

constant model NA NA NA NA

bottleneck1 0.100 0.1004 0.5 1.0

bottleneck2 0.015 0.0160 0.5 1.0

bottleneck3 0.015 0.0170 0.01 1.0

bottleneck4 0.015 0.0160 0.005 1.0

bottleneck5 0.015 0.0170 0.1 1.0

bottleneck6 0.010 0.0104 0.5 1

bottleneck7 0.010 0.0104 0.1 1

Time is measured backwards, from the present to the past. Thus, the ‘beginning’ of the bottleneck is the most recent time point that the population size changes. Forward in
time, it corresponds to the ‘end’ of the bottleneck
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Fig. 13 Comparison between OmegaPlus and other commonly used summary statistics and neutrality tests. a Sensitivity analysis, i.e., the percentage
of the simulations with selection that are detected as selected by each tool. b Specificity analysis, i.e., the distance of the detected target of selection
from the true target of selection (in kilobases). The darker the cell in the heatmap is, the greater the accuracy is

neutrality tests performed better regarding sensitivity.
OmegaPlus can identify all selective sweeps and its aver-
age reported distance from the true target of selection
is 20 kb (closer than any other neutrality test). For more
severe bottlenecks, the performance of all tools is con-
siderably reduced. For instance, for bottleneck4 (relative
population size during bottleneck is 0.005 of the present-
day population), OmegaPlus can detect only slightly less
than half (48.3%) of the sweeps, at an average distance
of 28 kb from the true target of selection. Other neu-
trality tests performed even worse. For example, Tajima’s
D detected only 18.5% of the sweeps, at a distance of
approximately 70 kb away from the real target of selection.
A study by Pavlidis et al. [27] showed that combining

LD- and SFS-based methods can potentially increase our
ability to detect selective sweeps and reduce the false pos-
itive rate. The rationale behind their approach is that both
LD-based tests (such as OmegaPlus) and SFS-based tests
(such as SweeD) should point to the same location when
a selective sweep has occurred. To facilitate the combina-
tion of results, we have implemented two R scripts that
illustrate both OmegaPlus and SweeD results in a com-
mon plot. Both of the scripts highlight outliers detected by

both OmegaPlus and SweeD. The download links to the R
scripts are provided in the Additional file 4.
The first R script invokes OmegaPlus and SweeD to ana-

lyze a dataset using the same grid size g for both tools. The
g points are defined as gi = (oi, si), where oi and si are the
OmegaPlus and SweeD values of the grid-point i. Given a
significance level a, e.g., 5 %, the threshold value to detect
outliers is defined as the point gc = (oc, sc) for which 5% of
grid-points exist where both OmegaPlus and SweeD val-
ues are greater than oc and sc, respectively. The second R
script calculates the threshold via simulations instead of
relying on the input dataset.

Analysis of input parameters
As already mentioned, to perform an OmegaPlus anal-
ysis, a minimum number of five input arguments are
required. There are also optional parameters that can be
used, such as the minimum number of SNPs required
in a region needed calculate the ω-statistic (-minsnps),
the maximum difference (balance parameter) in terms
of number of SNPs between the left and right windows
(-b), or whether singletons should be considered for the
computations (-no-singletons).
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Some input parameters have minimal effect on the
outcome while others affect the results profoundly. The
-maxwin parameter, for instance, which specifies themax-
imum extent of a sweep, has negligible effect on the results
if it is sufficiently large. For example, for mutation and
recombination rates similar to Drosophila melanogaster,
all -maxwin values greater than 50 kb will give approxi-
mately the same results. This is because it is almost certain
that the ω-statistic maximizes for a window smaller than
the -maxwin value. The balance parameter -b restricts
the left and right windows to be approximately equal in
size. Thus, calculations on significantly uneven windows
in terms of number of SNPs are avoided. Similarly to -
maxwin, the value of -b does not have a great effect on the
results. However, computations become faster when a low
-b value is provided, e.g., less than 10.
The -no-singletons flag is necessary only when we sus-

pect that themajority of singletons result from sequencing
errors. It is not advised to exclude singletons from high
quality datasets because the power to detect selective
sweeps will decrease. Singletons in abundance is essen-
tially the main signature of a selective sweep, and thus
excluding them from the analysis will reduce our ability to
detect a sweep.

The minimum number of SNPs (-minsnps) and the
minimum window size (-minwin) parameters can affect
the results dramatically. Small values, such as 2 for min-
snps, and 500 bp for minwin (when human data are
analyzed), must be avoided. This is because such val-
ues for these parameters increase the stochasticity of the
results significantly. Even under neutrality, it is highly pos-
sible that linkage disequilibrium will assume very high
values in small windows. The minsnps parameter has a
similar effect. It is a challenge to provide a guideline
for setting these parameters because their values should
be dataset-specific. Further, they depend on factors such
as recombination and mutation rate and on the demo-
graphic history of the organism. When the evolutionary
parameter values are such that they increase the vari-
ance along the genome (e.g., small recombination rate,
small population size, bottleneck, or small migration rate),
highminwin andminsnps values are preferable. Typically,
we set minsnps to 5 and minwin to 10 kb for human
data. The corresponding values for Drosophila are usu-
ally smaller. Figure 14 demonstrates the effect of minwin
on the sensitivity and specificity of OmegaPlus. As can
be observed in the figure, small window sizes (e.g., 500
bp) reduce performance. The reason behind this obser-

Fig. 14 Sensitivity and specificity analysis for variousminwin values and bottleneck scenarios. a Heatmap for the percentage of simulations with
selection detected as selected by OmegaPlus for variousminwin sizes and bottleneck scenarios. b Distance of the detected target of selection from
the true target of selection. In a, darker color means higher sensitivity, i.e. more cases of selection are detected. In b, darker color means higher
accuracy, i.e. the detected target of selection is closer to the real target of selection
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vation is that stochasticity increases in small windows,
outperforming the effect of a selective sweep. On the other
hand, largeminwin values (e.g., 50 kb or larger) would also
reduce the performance of the algorithm because they
contain a large proportion of SNPs not affected by the
selective sweep. Determining the optimalminwin value is
not feasible, because the choice is affected by the demo-
graphic model. For example, all minwin values between
10 kb and 50 kb perform excellently for bottleneck1,
whereas a minwin value of 30 kb gives the best results for
bottleneck3.

Conclusions
With the introduction of the generic parallelization alter-
native in the OmegaPlus source code, there are currently
four algorithmic variations that one can use, raising the
question: “Which parallelization alternative is the most
suitable for my datasets?”. A prerequisite to answering
this question is understanding which factors affect per-
formance and which factor is better served by each
parallelization alternative. The three dataset-dependent
factors that have an impact on performance are the sample
size, the total amount of polymorphism, and the dis-
tribution of SNPs along a dataset. The performance of
the fine-grained approach (OmegaPlus-F) improves with
an increasing sample size. This is because OmegaPlus-F
exploits parallelism in narrow genomic regions (maxi-
mum region that a selective sweep can affect), where the
number of SNPs is limited and the only factor that affects
performance is the sample size. In this case, as the sam-
ple size increases the computation-to-synchronization
ratio improves, yielding better overall performance for
OmegaPlus-F. For datasets with increased number of
SNPs, the multi-grained approach in OmegaPlus-M is
expected to deliver higher performance as the number of
SNPs increases because OmegaPlus-M distributes large
genomic regions to different threads and each thread
analyzes a region uninterrupted, thus eliminating any
synchronization overhead. The coarse-grained approach
in OmegaPlus-C typically shows similar behavior to
OmegaPlus-M. However, OmegaPlus-M is less prone to
the distribution of SNPs along the dataset, and as such
it should be preferred over OmegaPlus-C at all times.
Finally, the performance of the new generic approach,
because of the fundamentally different load organiza-
tion and distribution scheme, remains unaffected by the
distribution of SNPs along a dataset. Furthermore, it
exploits a region-based processing scheme, similar to the
multi-grained approach, which achieves improved perfor-
mance for large number of SNPs, and implements block-
ing to improve the computation-to-synchronization ratios
observed in OmegaPlus-F for small sample sizes. Overall,
the generic approach is the preferred approach for small
and moderate size datasets, whereas the n becomes more

powerful for large sample sizes, and the multi-grained
approach for long genomes.
The discussion so far has not taken into considera-

tion the number of cores. Assuming that the dataset size
remains constant as the number of cores increases, each
thread is assigned smaller computational load, thus reduc-
ing the computation-to-synchronization ratio. Although
this is generally the case for all parallel algorithms, the
performance degradation becomes less prevalent with an
increasing dataset size. The generic approach shows the
best performance for increasing number of cores even
when the dataset size is not large enough to justify a large
number of cores; it has the most stable parallel efficiency
over all experiments conducted in this study.
From a performance standpoint, devising an efficient

parallel algorithm that scales well for a large number of
cores is challenging because of the variety of attributes
that the input dataset may have, such as the sample size,
the number of SNPs, the data type (binary data or DNA),
and the SNP density and distribution in the dataset. All
parallel algorithms presented in this study yield qualita-
tively the same results. However, their performance dif-
fers, depending on the aforementioned attributes of the
input data. Thus, choosing the right parallel algorithm for
an analysis can lead to significantly shorter analysis time
and energy savings.
As future work, we intend to further optimize the per-

formance of the kernels used for selective sweep detection
by using SIMD (Single Instruction Multiple Data) vector
intrinsics such as SSE (streaming SIMD extensions) and
AVX (advanced vector extensions), which are available in
all modern microprocessor architectures. Computing LD
between two SNPs is an embarrassingly parallel problem2.
Therefore, boosting single-thread execution with vector
intrinsics and combining highly optimized kernels with
scalable parallel algorithms will lead to significant time
reduction for the analysis of large-scale datasets.
Furthermore, we will be exploring emerging hardware

architectures such as FPGAs and GPUs for offloading
computationally intensive kernels and accelerating LD-
based selective sweep detection. As already mentioned,
the offload-compute paradigm in the generic algorithm is
very suitable for hardware-based acceleration. By appro-
priately limiting the algorithm’s memory overhead (which
is already an input parameter), adapting the memory
layout to achieve coalesced memory accesses on a SIMT
(single instruction multiple threads) architecture, and
devising a simplified OpenCL kernel for LD calculation,
we can make use of the computational power of modern
GPUs.
Detailed profiling of the current ω statistic implemen-

tation in OmegaPlus revealed that significant fraction of
the total execution time (up to 70%) is spent calculating
LD values between SNPs. Therefore, we intend to devise a
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reconfigurable accelerator architecture for computing LD,
and use high-performance communication infrastructure
for hardware acceleration [49, 50] to achieve faster execu-
tion when large-scale datasets are analyzed.
Finally, in addition to the way in which the data-reuse

optimization is currently deployed for LD and ω statistic
calculations, the strategy of data reuse can be exploited
for the computation of other neutrality tests and sum-
mary statistics as well. Although such statistics are not
highly compute-intensive, they typically conduct a large
number of redundant calculations because of extensive
overlaps between neighboring windows. Similarly, the
generic processing scheme applied here in the context
of selective sweep detection can be adapted to oper-
ate on disjoint pairs of genomic regions rather than a
single genomic region (as required for selective sweep
detection). This will enable the efficient evaluation of
long-range LD on whole genomes without conducting
redundant computations or requiring excessive memory
resources.

Availability and requirements
Project name: OmegaPlus , Software for detecting selec-
tive sweeps
Projecthomepage: https://github.com/alachins/omegaplus
http://pop-gen.eu/wordpress/software
Operating systems: Linux
Programming language: C
Other requirements: none
License: GNU GPL
Any restrictions to use by non-academics: none

Availability of supporting data
Supporting materials can be downloaded from the Giga-
Science GigaDB database [51].

Endnotes
1A small number of lines of code that are repeated

many times during program execution.
2Embarassingly parallel is a term used in parallel

computing to describe computational problems that
require little effort to distribute the problem to multiple
tasks.

Additional files

Additional file 1: Human Chromosome 1 OmegaPlus results. This file
contains the OmegaPlus reports and information files for the analysis of the
first chromosome of the human genome (2,504 genomes) for two different
data representations: DNA data (4 bits per allele) and binary data (1 bit per
allele). (ZIP 155 kb)

Additional file 2: Human Chromosome 1 OmegaPlus results per
population. This file contains the OmegaPlus reports and information files
for the analysis of the first chromosome of the human genome per
population (26 populations) for DNA data representation. (ZIP 1120 kb)

Additional file 3: Plots of OmegaPlus scores per population along
Human Chromosome 1. This file contains a series of plots (26 plots, one
per population) of the OmegaPlus scores along the human chromosome 1.
(ZIP 512 kb)

Additional file 4: Command lines for ms andmssel, and download
links to the R scripts. This file contains a document that provides the
command lines for generating the trajectories of the beneficial mutations
in different bottleneck scenarios, the command lines to invoke the software
tools ms and mssel for the simulations, and the download links for the R
scripts to combine and plot OmegaPlus and SweeD scores. (ZIP 56 kb)
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