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Abstract

Background: Resolution of complex repeat structures and rearrangements in the assembly and analysis of large
eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping
technologies (for example, optical restriction mapping). In particular, mapping technologies can generate sparse
maps of large DNA fragments (150 kilo base pairs (kbp) to 2 Mbp) and thus provide a unique source of information for
disambiguating complex rearrangements in cancer genomes. Despite their utility, combining high-throughput
sequencing and mapping technologies has been challenging because of the lack of efficient and sensitive
map-alignment algorithms for robustly aligning error-prone maps to sequences.

Results: We introduce a novel seed-and-extend glocal (short for global-local) alignment method, OPTIMA (and a
sliding-window extension for overlap alignment, OPTIMA-Overlap), which is the first to create indexes for
continuous-valued mapping data while accounting for mapping errors. We also present a novel statistical model,
agnostic with respect to technology-dependent error rates, for conservatively evaluating the significance of
alignments without relying on expensive permutation-based tests.

Conclusions: We show that OPTIMA and OPTIMA-Overlap outperform other state-of-the-art approaches (1.6 — 2
times more sensitive) and are more efficient (170 — 200 %) and precise in their alignments (nearly 99 % precision).
These advantages are independent of the quality of the data, suggesting that our indexing approach and statistical
evaluation are robust, provide improved sensitivity and guarantee high precision.
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Background

In recent years, the availability of commercial platforms
for high-throughput genome mapping (from, for example,
OpGen [1], BioNano Genomics [2] and Nabsys [3] have
increased the interest in using these technologies, in com-
bination with high-throughput sequencing data, for appli-
cations such as structural variation analysis and genome
assembly. In particular, several recent genome assem-
bly projects have highlighted their utility for obtaining
high-quality assemblies of large eukaryotic genomes (for
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example, goat [4] and budgerigar [5] genomes) or study-
ing complex genomic regions [6] and cancer genomes [7].
Mapping technologies typically provide sparse informa-
tion (an ordered enumeration of fragment sizes between
consecutive genomic patterns, for example, restriction
sites) for very large fragments of DNA (150 kilo base
pairs (kbp) to 2Mbp) and are thus orthogonal in util-
ity to sequencing approaches that provide base-pair level
information for smaller fragments. Combining these two
pieces of information therefore requires effective algo-
rithms to align maps to sequences.

Alignment of maps (typically called Rmaps, for restric-
tion maps [8]) to sequences has been widely studied
as an algorithmic problem [9] with a range of practical
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applications, from genome scaffolding [10] to assem-
bly improvement [11] and validation [12]. The gen-
eral approach has been to translate sequence data to
get in silico maps and compare these to experimentally
obtained maps using dynamic programming algorithms.
For large genomes and mapping datasets, naive all-versus-
all dynamic programming can be computationally expen-
sive. On the other hand, high error rates in mapping
data (optical mapping, for example, can miss one in four
restriction sites) has led to the use of model-based scoring
functions for sensitively evaluating alignments [13-15].
These often require prior knowledge and modeling of
mapping error rates (for example, fragment sizing errors,
false cuts and missing cuts) and can be expensive to
compute [13, 16, 17]. Alternative approaches with sim-
pler (non-model-based) scoring functions [10] are hand-
icapped by the need to do expensive permutation-based
statistical testing to evaluate the significance of align-
ments, and although recent advances have made this test-
ing more efficient [15], it still scales linearly with genome
size. Although these approaches work well for micro-
bial genomes, they typically do not scale well for larger
genomes, where they might also have reduced sensitivity.
In contrast, commercially available solutions for map-to-
sequence alignment (for example, Genome-Builder from
OpGen) scale better and have been used for the assem-
bly of large eukaryotic genomes [4] but tend to discard a
large fraction of the mapping data (more than 90 %) due to
reduced sensitivity and correspondingly lead to increased
mapping costs for a project.

Map-alignment algorithms are thus faced with the twin
challenges of improving sensitivity and precision on the
one hand and reducing computational costs for alignment
and statistical evaluation on the other hand. An elegant
solution to this problem from the field of sequence-
to-sequence alignment is the use of a seed-and-extend
approach [18]. However, because maps represent ordered
lists of continuous values, this extension is not straight-
forward, particularly when multiple sources of mapping
errors and their high error rates are taken into account
[19]. In addition, because error rates can vary across tech-
nologies, and even across different runs on the same
machine, it is not clear whether a general sensitive map-
to-sequence aligner is feasible. An efficient statistical
testing framework that helps control for false discovery
without prior information about error rates is critical for
making such an aligner easy to use and applicable across
technology platforms.

In this work, we describe how a sorted search index
and the use of a composite seeding strategy can help to
efficiently and sensitively detect seed map-to-sequence
alignments [20]. Our second contribution is the design
of a robust and fast statistical evaluation approach that
includes multiple sources of mapping errors in the
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alignment score and evaluates the significance of the
best alignment using all identified feasible solutions. We
incorporated these ideas and additional refinements to
solve two common alignment problems: glocal align-
ment, solved with OPTIMA, where an entire map is
aligned to a subsequence of a second (typically in sil-
ico) map; and overlap alignment, solved with OPTIMA-
Overlap, where the end of one map is aligned to the
beginning of another. When benchmarked against state-
of-the-art aligners, OPTIMA and OPTIMA-Overlap typ-
ically provide a strong boost in sensitivity (1.6—2 times)
without sacrificing precision of alignments (~99%).
Moreover, our pilot implementations exhibited runtime
improvements over commercially available tools (two
times faster than OpGen’s Gentig) and orders of mag-
nitude over published, freely available algorithms and
software [10, 13].

Finally, these methods are shown to be robust to varia-
tions in error distributions while being agnostic to them,
suggesting that the methods can deal with different exper-
imental outcomes of the same technology (for example,
different map cards or lane types) as well as being appli-
cable across mapping technologies (with minor modifi-
cations for pre-processing of data). Because glocal and
overlap alignments form the basis of a range of applica-
tions that involve the combination of sequence and map-
ping data (for example, assembly scaffolding, refinement
and validation, structural variation analysis and resolv-
ing complex genomic regions), OPTIMA and OPTIMA-
Overlap can serve as building blocks for these applica-
tions, allowing for time- and cost-effective analyses.

Definitions and problem formulation

High-throughput genome mapping technologies typically
work by linearizing large molecules of DNA (for example,
in nanochannels [6]) and using enzymes such as restric-
tion enzymes to recognize and label (for example, by
cutting DNA) specific patterns throughout the genome
(for example, a 6-mer motif). These patterns are then read
out (typically, optically) to obtain an ordered set of frag-
ment sizes for each DNA molecule (see Fig. 1a for an
example of a map). If corresponding genome sequences
or assemblies are available, these can be converted into in
silico maps through pattern recognition [16].

Let 01,02,...,0, be the m ordered fragment sizes of
an experimentally derived map o and ry,r,...,1r, be
the n fragment sizes of an in silico map r. For sim-
plicity, we suppose here that m < » and assume that
we can derive standard deviations for in silico frag-
ments, that is, o; for rj, in a technology-dependent fash-
ion. In an idealized case, we can define the problem
of glocally aligning o to r as a one-to-one correspon-
dence between all the fragments of o with a subset
of the fragments of r, that is, r,7r1,..., 7,1 (We
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Fig. 1 Example of a genomic map and strategies for glocal and overlap map alignment. a Example of an experimental or in silico map with ordered
fragment sizes. b Feasible match within dashed bars (Definition 1). € Composite seeds with ¢ = 2 (Definition 4), where Composite (iv) represents the
final composition of seeds with errors used here; the case with one false cut allowed is not directly indexed from the in silico maps, but is explored
during the seed search process. d Seed extension in glocal alignment with dynamic programming (straight lines delimit feasible matches found,
dashed lines mark truncated end matches and dashed circles show potentially missing fragments). e Sliding-window approach in overlap
alignment: for a particular window of fixed size (dashed black border) we first compute a glocal alignment (solid yellow border) from one of its seeds
(multicolored box), statistically evaluate it and subsequently extend it until the end of one of the maps is reached on both sides of the seed

could also reverse the roles of o and r here). In prac-
tice, many sources of errors affect experimentally derived
maps, including missing cuts, false/extra cuts, missing
fragments, fragment sizing errors and spurious maps
[13]. In silico maps could also be affected by sequenc-
ing or assembly errors [10], but these are less likely to
affect alignments because typically they are infrequent. To
accommodate errors, we extend the definition of corre-
spondence between map fragments to allow for matches
between sets of fragments (see Fig. 1b), as used previously
in [10]:

Definition 1 (Feasible match). A subset of fragments
Ok> Ok+1, - - - » 05 aligned as as a whole entity to a subset of

in silico fragments ry, rj11, . . ., ¢ is called a feasible match

if and only if:

s t
2.0i =D 1
i—=k =
= _Z |<c, 1

where C, = 3 is an appropriate bound if sizing errors are
approximately normally distributed.

Definition 2 (Glocal alignment). A valid glocal align-
ment is an ordered set of matches My, M, . . ., M, between
experimental and in silico fragments, such that all the
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experimental fragments 01, 02, . . ., 0, are aligned to a sub-
set of the in silico fragments r¢, 111, ..., 1y, and both sets
are orderly partitioned by all the matches M _,, without
overlaps, withw < mandw <v —t+ 1.

Missing fragments, which usually arise from short frag-
ments below the experimental detection limit (for exam-
ple, 2kbp), can be handled in this framework by allowing
gaps, that is, with the option of ignoring short fragments
for the purpose of the C, test (Eq. 1).

Definition 3 (Overlap alignment). A valid overlap
alignment is an ordered set of matches My, Ma, ..., M,
that allows experimental maps and in silico maps to only
partially align with each other, with My and M,, each cor-
responding to an end of one of the maps (for example,
Fig. Ie).

In general, because maps can have truncated ends, we
relax the C, test to be only an upper bound on matches
comprising the ends of experimental maps, for example:

or a lower bound on matches at the ends of in silico maps,
for example:

S 12
Z 0; — Z ri = Cy
i=k =l

Methods

OPTIMA is the first alignment tool based on the seed-
and-extend paradigm that can deal with erroneous map-
ping data. The basic paradigm is similar to that used
for the alignment of discrete-valued sequences (allowing
for mismatches and indels) and is as follows. We start
by indexing the in silico maps, so that we can use this
information later, and find seeds for each experimental
map o corresponding to some indexed regions of those
sequences. We then extend these seeds by using dynamic
programming to try to align the whole experimental map
to the corresponding in silico map region. For each map
0, feasible solutions — as defined by the index structure,
size of the genome and maximum error rate — are then
evaluated by a scoring scheme to select the optimal solu-
tion. Finally, the statistical significance and uniqueness of
the optimal solution are determined by comparing and
modeling all the identified feasible solutions.

Indexing continuous-valued seeds
The definition of appropriate seeds is critical in a seed-
and-extend approach in order to maintain a good balance
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between sensitivity and speed. A direct extension of
discrete-valued seeds to continuous values is to con-
sider values that are close to each other (as defined by
the C; bound) as matches. However, as mapping data
typically have high error rates [13, 16] and represent short
sequences (for example, on average, optical maps contain
10-22 fragments, representing roughly a 250 kbp region
of the genome), a seed of ¢ consecutive fragments (c-
mer) is likely to have low sensitivity unless we use a naive
¢ = 1 approach (see Fig. 2 for a comparison) and pay a
significant runtime penalty that scales with genome size
[14, 16]. Therefore, we propose and validate the following
composite seed extension for continuous-valued seeds,
analogous to the work on spaced seeds for discrete-valued
sequences [21].

Definition 4 (Composite seed). Let rj,, rj, and rj, be
consecutive restriction fragments from a reference in silico
map. A continuous-valued composite seed, for ¢ = 2, is
given by including all of the following:

(i) the c-merrj, rj,, corresponding to no false cuts in
the in silico map;

(i) the c-mer rj, + rj,, 1}y, corresponding to a missing
cut in the experimental map (or false cut in the in
silico map); and

(iii) the c-merrj;, rj, + rj;, corresponding to a different
missing cut in the experimental map (or false cut in
the in silico map).

The reference index would then contain all ¢c-tuples cor-
responding to a composite seed, as defined in Definition 4,
for each location in the reference map. In addition, to
account for false cuts in the experimental map, for each
set of consecutive fragments o;,, 0;, and o;, in the experi-
mental maps, we search for c-tuples of the type o;,, 0;, and
0i, + 0i,, 0;; in the index (see Composite seeds (iv) depicted
in Fig. 1c).

To index the seeds, we adopt a straightforward approach
where all c-tuples are collected and sorted into the same
index in lexicographic order by ¢; (where the ¢; are ele-
ments in the c-tuple). Lookups can be performed by
binary search over fragment-sized intervals that satisfy the
Cs bound for ¢; and a subsequent linear scan of the other
elements c;, for i > 2, while verifying the C, bound in each
case. Note that, because seeds are typically expected to be
of higher quality, we can apply a more stringent thresh-
old on seed fragment size matches (for example, we used
Cseed = 9),

As shown in the “Results and discussion” section, this
approach significantly reduces the space of candidate
alignments without affecting the sensitivity of the search.
A comparison between the various seeding approaches
is shown in Fig. 2, which highlights the advantages of
composite seeds with respect to 2-mers.
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Fig. 2 Comparison of sensitivity between different seeding approaches for the human genome. a The easier scenario (a). b The harder scenario (b).
For each corresponding length in fragments, we report the percentage of maps with at least one correct seed detected (out of 100 maps). Note that
the approach used in OPTIMA, Composite seeds (iv), was able to find the correct location for more than 99 and 88 % of maps with at least ten

Overall, the computational cost of finding seeds using
this approach is O(m (log n+ c #seeds.—1)) per experimen-
tal map, where # is the total length of the in silico maps
in fragments, m <« #u is the length of the experimental
map and #seeds.—; is the number of seeds found in the
first level of the index lookup, before narrowing down the
list to the actual number of seeds that will be extended
(#seeds). The cost and space of creating the reference
index is thus O(c n), if the number of errors considered
in the composite seeds is limited and bounded (as in
Definition 4), and radix sort is used to sort the index.
This approach drastically reduces the number of align-
ments computed in comparison to more general, global
alignment searches [10], as will be shown later in the
“Results and discussion” section.

Dynamic programming-based extension of seeds

In order to extend a seed to get a glocal alignment we
adopt a scoring scheme similar to that used in SOMA (see
[10]). This allows us to evaluate alignments without rely-
ing on a likelihood-based framework that requires prior
information on error distributions as input [13]. In addi-
tion, we can use dynamic programming to efficiently find
glocal alignments that optimize this score and contain the
seed (see Fig. 1d); specifically, for each seed side we pro-
ceed along the dynamic programming matrix by aligning
the end of the sth experimental fragment with the end of
the tth in silico fragment using backtracking to find feasi-
ble matches, that is, those that satisfy Eq. 1 and minimize
the total number of cut errors ( #cuterrors = missing cuts
+ false cuts + missing fragments found), with ties being
broken by minimizing a x? function for fragment sizing
errors:

Scoresy = min Cce(s—k—f—t—l)—i—xlf o1 ¢ TScorer 1) 1,
k<s,i<t Rt
2)

where the first index of each subscript represents exper-
imental fragments, the second index represents the in
silico fragments, s — k is the number of false cuts,
t — [ is the number of missing cuts, C. is a constant
larger than the maximum possible total for x2, x lfs =

s t 2 t

(Z 0i—Y. rj> / (/Z Uj2> and Scoregp = 0, Scorejp =
i=k j=1l j=1

oo and SCZ)V@()J‘ = 00.

Note that a small in silico fragment is considered as
missing if this condition allows for a valid alignment that
improves the local x? on nearby matches by half (up to
three consecutive fragments).

As in [16], we band the dynamic programming and its
backtracking to avoid unnecessary computation. In par-
ticular, as we show in Supplementary Note 1 in Additional
file 1, based on parameter estimates for optical mapping
data, restricting alignments to eight missing cuts or five
false cuts, consecutively, should retain high sensitivity. In
addition, we stop the dynamic programming-based exten-
sion if no feasible solutions can be found for the current
seed after having analyzed at least f fragments (default of
five).

The computational cost of extending a seed (c-tuple)
of an experimental map with m fragments is thus, in the
worst case, O((m — ¢) §%) time, where § is the bandwidth
of the dynamic programming, and O((m — c)?) space for
allocating the dynamic programming matrix for each side
of the seed.

Statistical significance and uniqueness analysis

To evaluate the statistical significance of a candidate align-
ment, we exploit the fact that we have explored the space
of feasible alignments in our search and use these align-
ments to approximate a random sample from a (conserva-
tive) null model. The assumption here is that there is only
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one true alignment and that, therefore, the population of
these sub-optimal alignments can provide a conservative
null model for evaluating the significance of an alignment;
more specifically, for each candidate alignment found, we
compute its distance from the null model in a feature
space (to be defined later) using a Z-score transformation
and then use this score to evaluate whether it is opti-
mal, statistically significant and unique (see Fig. 3 for an
example).

We start by identifying a set F of features, independent
with respect to false positive (or random) alignments, that
are expected to follow the normal distribution (for exam-
ple, using the central limit theorem) and be comparable
between different alignments of the same experimental
map, and we compute a Z-score for each feature f € F
and for each candidate solution € I identified through
the seeding method. Each Z-score takes into account the
mean and standard deviation of a particular feature f
among all candidate alignments found:

fn — Mean(fy)
SD(fr1)

Accounting for all considered features f;, with 1 < i < k
and k > 2, the resulting score is given by:

Z — score(m € TL,f) = (3)

V(r € 1) = Z — score (Z si X Z — score(n,ﬁ)) s

12
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where s; = 1 if lower values of feature f; are preferable
and —1 otherwise, and the corresponding p-value is p, =
Pnorm(#(;r)), that is, the probability that a ‘random’ Z-
score will be less than () under the standard normal
distribution.

In our case, we chose a set of features based on the
number of matches (#matches), the total number of cut
errors and the Wilson-Hilferty transformation (WHT) of
the x? score for sizing errors (which converges quickly to
a standard normal distribution):

S (-1 2 )

# tch 9% tch

WHT (XZ: #Wltltches) = matcnes matches )
1 2

9 #matches

(5)

Note that this set can be shown to be composed
of approximately independent features for false positive
alignments (Z-score pairwise covariances between all fea-
tures did not show a significant alteration of the final Z-
scores when accounting for them in all of our simulations).
By the central limit theorem, the mean of the first two
features can be approximated by the normal distribution
when the number of candidate solutions is large enough
(typically, greater than 60 distinct solutions), and, by Slut-
sky’s theorem, their sample variance would not have a sig-
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Fig. 3 Representation of candidate alignments as a function of alignment features. The results shown are based on aligning a 26-fragment
simulated experimental map on the human reference genome. The green comet represents the true solution, and also the best solution 7 * found
by OPTIMA (p-value p* = 2.1 6e79), while the blue comet belongs to a false alignment with the lowest number of cut errors (p = 7.35e7%). Note
here that despite having many near-optimal solutions, OPTIMA unambiguously identifies the correct solution based on its statistical analysis
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lower values of #cuterrors and WHT(x 2, #matches) indi-
cate better solutions, while a higher number of matches
represents more reliable alignments, we need to adjust the
signs of their Z-scores accordingly. The final Z-score ¥ ()
computed for each candidate solution r is therefore given
by:

Y(r € Il) = Z — score(—Z — score(w, #matches)
+ Z — score(m, #cuterrors)
+ Z — score(t, WHT (x 2, #matches)) ),
(6)

which can be subsequently converted into the p-value p,.
The candidate solution 7 * with the lowest p-value p* is
reported as the optimal solution, as shown in Fig. 3.

The statistical significance of the optimal solution can
then be assessed through a false discovery rate g-value
analysis [22] based on all candidate solutions found for
comparable experimental maps, for example, those with
the same number of fragments (default of ¢ = 0.01).
To assess uniqueness, we set a threshold on the ratio
of p-values between the best solution and the next-best
solution (default of five). See Supplementary Note 2 in
Additional file 1 for further algorithmic details.

In summary, our statistical scoring approach finds an
optimal solution and evaluates its statistical significance
and uniqueness in a unified framework, thus allowing for
savings in computational time and space compared to a
permutation test, without restricting the method to a sce-
nario where experimental error probabilities are known a
priori.

Extension to overlap alignment

To extend OPTIMA to compute and evaluate overlap
alignments — a key step in assembly pipelines that use
mapping data [4, 5, 23] — we use a sliding-window
approach based on OPTIMA. This allows us to con-
tinue using the statistical evaluation procedure defined in
OPTIMA that relies on learning parameters from compa-
rable alignments (that is, those with the same number, size
and order of experimental fragments) in a setting where
the final alignments are not always of the same length and
structure.

Briefly, for each map, OPTIMA-Overlap first finds opti-
mal sub-map alignments, evaluates their significance and
uniqueness, and then tries to extend the candidate align-
ments found until it reaches the ends of either the exper-
imental map or the in silico map, in order to choose the
most significant overlap alignments (see Fig. le). This
approach begins by dividing an experimental map into
sub-maps of length / with a sliding window and then glo-
cally aligning them to in silico maps using OPTIMA (again
allowing for truncated ends to account for high error
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rates). Each glocal alignment sub-problem will then return
either:

(i) asignificant and unique sub-map alignment;
(i) an alignment labeled as non-significant and/or
non-unique (which will be considered as a false
alignment); or
(iii) no feasible alignments found.

Optimal solutions to the sub-problems are then ranked
by p-value (smallest to largest) and iterated through to
select sub-maps that should be extended. At each stage
we check the significance and uniqueness of the reported
solutions (compared to the others), as well as checking for
potential cases of identical or conflicting alignments as
defined below.

Definition 5 (Conflicting alignments). A sub-map
alignment 11 is said to be conflicting with another align-
ment 1y if either:

(a) the sub-map of w1 overlaps the sub-map of wy; or
(b) m aligns to the same in silico map as 7y, but in a
different location or strand.

Conflicting alignments can result in ambiguous place-
ment of an experimental map on a database of in silico
maps, but condition (a) could be relaxed in some cases,
for example, when experimental maps are known to over-
lap multiple in silico maps in the same region. Therefore,
while iterating through the list of sub-maps, the following
rules are implemented:

1. Significance: if the current solution 7; is labeled as a
false alignment, then we stop iterating through the
rest of the list.

2. Uniqueness: we skip an alignment if either: (i) 7;
represents the same overlap alignment as a more
significant solution; (ii) 7; is conflicting with a
solution with a lower p-value (that is, seen before); or
(iii) 7; is not unique with respect to other solutions
mj with j > i (that is, having greater p-values) that it
is conflicting with.

3. Extension with dynamic programming: optimal
overlap solutions are identified according to Eq. 2,
where ties are broken in favor of longer valid
alignments.

This approach allows us to report multiple overlap
alignments (including split alignments) for an experimen-
tal map while using the g-value analysis, as before, to
report all alignments with ¢ < 0.01. For the g-value
analysis, we consider all candidate solutions found for
the sliding windows in order to learn the g-value param-
eters. In addition, we can reuse the dynamic program-
ming matrix computed for each seed across sub-map
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alignments and thus complete the overlap alignment with
the same asymptotic time and space complexity as the
glocal alignment.

Results and discussion

Generation of benchmarking datasets

To benchmark OPTIMA and OPTIMA-Overlap against
other state-of-the-art map aligners, we first developed
synthetic datasets that aim to represent two ends of
the spectrum of errors in mapping data for eukaryotic
genomes. These scenarios were defined by confidently
aligning (using SOMA [10] and manual curation) two
sets of maps from different experimental runs for opti-
cal mapping (using the Argus system from OpGen) on
a human cell line. The first scenario, (A), was defined
based on lanes that were reported by the Argus machine
to have high quality scores, while the second scenario,
(B), was defined by lanes with the lower qualities that
were typically obtained on the system. We estimated three
key parameters from the data: d, the average restriction
enzyme digestion rate; figo, the average false cut rate per
100kbp; and the fragment sizing errors for predefined
(reference) in silico fragment size ranges (these were fixed
for both scenarios and recorded as relative deviations of
the empirical sizes from the reference sizes):

(A) Easier scenario: d = 0.78 (corresponding to missing
cut rate of 22 %); fioo = 0.97; and probability at 0.5
for missing fragments of size below 1.2 kbp, 0.75
below 600 bp and 1 below 350 bp.

(B) Harder scenario: d = 0.61 (corresponding to missing
cut rate of 39 %); fioo = 1.38; and 0.5 for missing
fragments of size below 2 kbp, 0.75 below 800 bp and
1 below 350 bp.

For each scenario, we first simulate the map sizes using
empirically derived distributions from real maps (aver-
age size of approximately 275kbp, containing 17 frag-
ments) and extract the corresponding reference sub-maps
by sampling start locations uniformly from the in silico
maps (possibly creating truncated end fragments). Then
we introduce cut errors using the probability distributions
described in [13] with the above parameters, that is: first,
we remove missing cuts following a Binomial distribution
with probability 1 — d; next, we insert false cuts modeled
as a Poisson process with rate figo (avoiding creation of
small fragments less than 1.2kbp in size); and finally, we
remove small fragments with the probabilities described
above. Sizing errors are introduced by sampling from the
empirical errors found for each range of reference frag-
ment sizes. Simulated experimental maps smaller than
150 kbp or with fewer than ten fragments are discarded,
mimicking the pre-processing stage on the Argus system.

We generated 100 times greater coverage of maps with
errors for the Drosophila melanogaster (BDGP 5) and
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Homo sapiens (hgl9/GRCh37) genomes using the Kpnl
restriction pattern GGTAC' C, where the apostrophe indi-
cates the position of the cut, which resulted in 13,920 frag-
ments genome-wide (forward and reverse strands) with
an average fragment size (AFS) of 17.3kbp and 573,276
fragments with AFS = 10.8 kbp, respectively.

Glocal alignment results

OPTIMA was compared against the state-of-the-art algo-
rithms Gentig v.2 (alignment module) [16, 17, 24], SOMA
v.2 [10] and Valouev’s likelihood-based fit alignment [13]
for glocally aligning the simulated maps over their respec-
tive in silico reference genomes. TWIN [19] was not
included in this comparison as it does not allow for errors
and missing information in experimental maps.

We also ran variations of these algorithms from their
default options (d): specifically, by providing the true error
distribution parameters used in the simulations as input
(tp), the adjusted AFS based on the organism under anal-
ysis (a) and parameter values published in the respective
papers (instead of the software’s default ones), to pro-
vide, in addition, the true error distribution rates (p); and
by allowing the trimming of map ends in the alignment
(t). Moreover, SOMA [10] was modified to correctly han-
dle missing in silico fragments up to 2kbp, to run only
for C, = 3, to make its results comparable, and by
inverting the role of in silico—experimental input maps
(v). We omitted SOMA’s statistical test (also for Valouev’s
likelihood method, where it is not enabled by default),
because it is unfeasible for large datasets [19], and applied
only its uniqueness test (F-test). Further details about the
running parameters are provided in Supplementary Note
3 in Additional file 1. OPTIMA alignments were per-
formed on both strands of the in silico maps, without
trimming end fragments or removing any small in silico
fragments.

As can be seen from the results in Table 1, OPTIMA
reports alignments with very high precision, greater than
99 % in most cases, independent of the genome size and
the dataset error rate. In comparison, Gentig has similarly
high precision on the Drosophila genome but lower preci-
sion on the human genome, with as low as 80 % precision
under scenario (B) (with default parameters). Without
their computationally expensive statistical tests, which
can increase the runtime by a factor of greater than 100,
SOMA and the likelihood-based method have much lower
precision, particularly on the human genome. In addition,
in terms of sensitivity, OPTIMA was found to be notably
better than other aligners, even when the true error dis-
tribution rates were provided as input to these algorithms.
In particular, for the higher quality scenario (A), OPTIMA
is more than 1.5 times as sensitive as Gentig, and for the
commonly obtained scenario (B), OPTIMA is more than
twice as sensitive as Gentig.
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Fig. 4 Glocal alignment as a function of the number of fragments in the experimental maps. Gentig results are plotted for setting (d) and
likelihood-based fit alignment results are for setting (d+a+t). Results are reported for 100 maps for each bin of simulated datasets for Drosophila and
human scenarios (a) and (b)
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Table 1 Comparison of all methods and their variants on glocal map-to-sequence alignment

Algorithm Drosophila (A) Drosophila (B) Human (A) Human (B)
S P S P S P S P

OPTIMA 20 100 49 929 83 100 43 98
Gentig v.2 (d) 59 100 24 929 53 96 20 80
Gentig v.2 (tp) 59 100 24 98 54 95 20 88
SOMA V.2 (v) 72 73 31 39 50 50 17 20
Likelihood (d+a) 49 49 29 30 24 24 14 14
Likelihood (d+a+t) 64 65 38 39 33 34 18 19
Likelihood (p+a+t) 75 75 39 39 62 62 19 20

Sensitivity (S) and precision (P) are percentages and the best values across all methods are highlighted in bold. Results are based on the alignment of a subset of 2100 maps,

as used in Fig. 4

These results are further broken down in Fig. 4 as
a function of the number of fragments in the experi-
mental maps, showing that OPTIMA uniformly achieves
more than twice the sensitivity for the smaller maps that
are frequently obtained in real datasets. The relatively
higher sensitivities of SOMA and the likelihood-based
method in these experiments are likely to be artifacts of
relaxed settings in the absence of their statistical tests.
These results highlight OPTIMA’s high precision and
improved sensitivity across experimental conditions and
suggest that it could adapt well to other experimental
settings.

In Table 2, we further compare all methods on their
running time and worst-case complexity (runtime and
space). It can be seen that SOMA and the likelihood-based
methods are at least an order of magnitude slower than

OPTIMA and Gentig. Gentig’s proprietary algorithm is
based on work that has been previously published [17, 24],
but its current version uses an unpublished hash-
ing approach. In comparison, OPTIMA is two times
faster while being more than 50% more sensitive than
Gentig.

Real data analysis and comparison

To assess OPTIMA’s performance on real data we gen-
erated, in-house, 309,879 and 296,217 optical maps for
two human cell lines, GM12878 and HCT116, respec-
tively, using the Argus system from OpGen [4, 25] (with
the Kpnl enzyme and ten map cards in total), and glocally
aligned them over the human reference genome. Supple-
mentary Note 4 in Additional file 1 provides the sizing
error statistics.

Table 2 Running time and worst-case complexity for various glocal map-to-sequence aligners

Algorithm Complexity Running time
Time Space Drosophila Human
OPTIMA O((m — ¢) 83 #seeds) o((m—=c)2+cn) 54 m 36 days
Gentig v.2 (d) ) ; 5 1.32h 75 days
O@#it m 8> #hashes) O(m?* 4 n + |HashTable|)
Gentig v.2 (tp) 1.85h 174 days
SOMA V.2 (v) O(m? n?) O(mn) 1.28 years 1,067 years
Likelihood (d+a) 2222h 2.72 years
Likelihood (d+a+t) O(mné?) O(mn) 1962 h 238 years
Likelihood (p+a+t) 4173 h 5.53 years

Running times reported are estimated from 2100 maps and extrapolated for the full datasets (82,000 Drosophila maps and 2.1 million human maps, for 100 x coverage;
single-core computation on Intel x86 64-bit Linux workstations with 16 GB RAM). The best column-wise running times are reported in bold. Note that including the
permutation-based statistical tests for SOMA and the likelihood method would increase their runtime by a factor of greater than 100. The complexity analysis refers to
map-to-sequence glocal alignment per map, where n is the total length of the in silico maps (~500,000 fragments for the human genome), m < n is the length of the
experimental map in fragments (typically 17 fragments on average), #seeds, ¢ (default of two) and § are as defined in the “Methods” section and #it (number of iterations),

#hashes (geometric hashes found to match) and |HashTable| are as specified in [17, 24]
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Tables 3 and 4 report statistics of the alignments for raw
maps filtered under two settings:

(r) relaxed filtering, which filters maps with fewer than
ten fragments and smaller than 150 kbp;

(s) stringent filtering (as suggested in [4]), which filters
maps with fewer than 12 fragments and smaller than
250 kbp.

The statistics were reported independently for each map
card to capture the variability in terms of quality. In total,
OPTIMA, with a stringent uniqueness threshold of 30,
confidently aligned nearly three times as many maps as
Gentig (with default parameters) for GM12878. Similarly,
for HCT116, OPTIMA results were 1.7 times better than
Gentig results, and corresponding improvements were
also obtained using the stringently filtered datasets.
Further analyzing the error rates in the maps that
OPTIMA confidently aligned (Tables 3 and 4), we
observed that the overall statistics for average digestion
rate d, false/extra cut rate foo and sizing errors were found
to be similar to those obtained using scenario (B) (see
Supplementary Note 5 in Additional file 1).

Overlap alignment results

For overlap alignment, we compared OPTIMA-Overlap
with an overlap-finding extension of Gentig v.2 (imple-
mented in the commercial software Genome-Builder
from OpGen, which contains a module called SCAFFOLD-
EXTENDER) [17, 24], as well as with Valouev’s likelihood-
overlap method [13].

In our first test, we randomly selected 1000 maps
for each scenario (A) and (B) from our previously
simulated maps for Drosophila (BDGP 5) and human
(hgl9/GRCh37) genomes. In addition, we simulated
assembled sequence fragments for these genomes
based on empirically derived scaffold size distributions
(Drosophila assembly N50 of 2.7 Mbp with 239 scaffolds
and human assembly N50 of 3.0 Mbp with 98,987 scaf-
folds); the simulated assemblies were used to generate
in silico maps (filtered for those with fewer than four
non-end fragments, because these cannot be confidently
aligned [14, 15]), which were then aligned with the
simulated experimental maps.

For our second test, we compared all methods on optical
mapping data generated in-house from the K562 human
cancer cell line on OpGen’s Argus system, where a ran-
dom sample of 2000 maps with at least ten fragments
was extracted. In silico maps were generated from de novo
assemblies of shotgun Illumina sequencing data (HiSeq)
and six mate-pair libraries with insert sizes ranging from
1.1kbp to 25kbp [26] (the final assembly had an N50 of
3.1 Mbp and 76,990 scaffolds in total, using SOAPdenovo
v.1.05 [27] with a k-mer size of 51 for contig assembly
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and Opera v.1.1 [28] for scaffolding with mate pairs). It is
likely that this dataset represents a harder scenario, with
assembly gaps/errors and genomic rearrangements con-
founding the analysis. It also represents a likely use case
where mapping data will be critical to detect large struc-
tural variations, disambiguate complex rearrangements
and, ultimately, assemble cancer genomes de novo.

For each test, we evaluated the precision of alignments
as well as the number of (correctly) reported alignments
that provide an extension to the in silico maps through
experimentally determined fragments, as this is key for
the application of overlap alignments in genome assembly.
We begin by noting that there is an important trade-
off between sensitivity with a specific window size in
OPTIMA-Overlap and the correctness of alignments, as
can be seen in Fig. 5. As expected, even though small win-
dow sizes (less than ten in Fig. 5) provide more sensitive
results, they also make true alignments indistinguishable
from noise and reduce the number of correct alignments
detected; on the other hand, larger window sizes improve
the signal-to-noise ratio but result in a drop in sensitivity.
This leads to a sweet spot in the middle (1013 fragments)
where the method is most sensitive across a range of
datasets. In particular, real datasets are slightly more chal-
lenging than our simulations (see human (B) compared to
real data in Fig. 5) and so we have conservatively chosen
a window size of 12 as the default for OPTIMA-Overlap.
By benchmarking OPTIMA-Overlap with this setting, we
observed high precision similar to that observed with
OPTIMA for glocal alignment (Table 5). This was seen
uniformly across datasets with disparate profiles in terms
of genome size and error rates, suggesting that our sta-
tistical evaluation is reasonably robust. As before, we
also note that Gentig’s approach and the likelihood-based
method might not always exhibit high precision. Finally, in
terms of sensitivity, OPTIMA-Overlap shows a 30-80 %
improvement over competing approaches, and this is also
seen in the harder real datasets.

Utility in real-world applications
Overlap alignments form a critical building block for
applications such as OpGen’s Genome-Builder and its use
in boosting assembly quality [4]. As OPTIMA-Overlap
can work with lower quality data (scenario (B) in our sim-
ulations; Genome-Builder would typically filter out such
data) and also provide improved sensitivity in detecting
overlap alignments, we estimate that its use could reduce
the requirement for generating mapping data by half. As
the cost of mapping data for the assembly of large eukary-
otic genomes can range from USD 20,000 to 100,000, this
can lead to significant cost savings.

We similarly compared OPTIMA and Gentig on the
two human cell line results, shown in Tables 3 and 4,
in order to calculate how much mapping data would



Table 3 Statistics for glocal alignment of real human optical maps from GM12878 HapMap cell line

Map card

F

Input maps

Details

OPTIMA

Gentig v.2

Increase w.rt.
Gentig v.2

Yield (genome
coverage)

Avg. length
and size

Avg. digestion
rate

Avg. false/extra
cut rate

Avg. WHT chisquare
sizing error

21157LB

2115918

21431LB

2144318

TOTAL

73,365 (7.2X)

38,483 (4.7X)

75,761 (7.6X)

41,236 (5.1X)

93,896 (8.6X)

43,667 (5.1X)

66,857 (6X)

29,991 (3.5X)

309,879 (29.4X)

153,377 (18.3X)

Avg. quality 0.50;
295 kbp, 18 f;
AFS 16.5 kbp

Avg. quality 0.53;
size 368 kbp, 22f;
AFS 17 kbp

Avg. quality 0.47;
size 300 kbp, 17f;
AFS 17.4 kbp

Avg. quality 0.50;
size 370 kbp, 21f;
AFS 17.8 kbp

Avg. quality 0.52;
size 274 kbp, 17f;
AFS 15.8 kbp

Avg. quality 0.54;
size 348 kbp, 21f;
AFS 16.3 kbp

Avg. quality 0.51;
size 271 kbp, 17f;
AFS 15.8 kbp

Avg. quality 0.53;
size 346 kbp, 21f;
AFS 16.3 kbp

Avg. quality 0.50;
size 285 kbp, 17f;
AFS 16.4 kbp

Avg. quality 0.52;
size 359 kbp, 21f;
AFS 16.9 kbp

25%

36 %

19 %

27 %

20%

30%

19%

29%

21%

31%

9%

14 %

5%

8%

8%

13%

7%

12%

7%

11 %

3X

2.6X

4X

34X

26X

24X

2.7X

25X

29X

2.7X

2X

6.8X

5.5X

21f|324kbp

23f|361 kbp

19f]325kbp

21f]359 kbp

21305 kbp

23f|343kbp

20| 299 kop

23f|340kbp

21f|314kbp

23f|352kbp

66 %

65 %

63 %

62%

68 %

67 %

67 %

66 %

66 %

65 %

0.74

0.73

0.72

0.72

0.77

0.77

0.77

0.77

0.75

0.75

-0.69

-0.58

-0.97

-042

-0.29

-0.50

-035

-0.66

-0.55

Statistics are reported independently for each map card of GM12878 cell line, using: (1) relaxed filtering: > 10 fragments and 150 kbp; and (s) stringent filtering: > 12 fragments and 250 kbp (as shown in column F). From left to right are
reported: the total number of input maps and their coverage in bases of the human genome; further details such as average map quality (provided by the Argus machine), average map size in bases and length in fragments, and
average fragment size (AFS); aligned maps by OPTIMA and Gentig v.2; OPTIMA alignment rate increase with respect to Gentig v.2; other OPTIMA alignment statistics
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Table 4 Statistics for glocal alignment of real human optical maps from HCT116 colorectal cancer cell line

Map card

F

Input maps

Details

OPTIMA

Gentig v.2

Increase w.rt.
Gentig v.2

Yield (genome
coverage)

Avg. length
and size

Avg. digestion
rate

Avg. false/extra
cut rate

Avg. WHT chi square
sizing error

17182LA

17184LA-2

17185LA

17186LA-3

17187LA

14593LB

TOTAL

n

(s)

10,911 (0.9X)

3,744 (0.4X)

55,719 (5.7X)

28,658 (3.7X)

56,879 (5.4X)

28,003 (3.4X)

52,984 (5.8X)

31,588 (4.3X)

88,730 (7.8X)

36,018 (4.2X)

30,994 (2.7X)

10,944 (1.2X)

296,217 (28.3X)

138,955 (17.2X)

Avg. quality 0.33;
size 257 kbp, 16 f;
AFS 15.7 kbp

Avg. quality 0.33;
size 351 kbp, 20 f;
AFS 17.7 kbp
Avg. quality 043;
size 305 kbp, 19 f;
AFS 16.3 kbp

Avg. quality 045;
size 390 kbp, 23 f;
AFS 17.2 kbp

Avg. quality 0.55;
size 285 kbp, 19 f;
AFS 14.7 kbp

Avg. quality 0.59;
size 365 kbp, 24 f;
AFS 15.1 kbp

Avg. quality 0.54;
size 328 kbp, 20 f;
AFS 16.0 kbp

Avg. quality 0.56;
size 404 kbp, 25 f;
AFS 16.4 kbp

Avg. quality 045;
size 264 kbp, 18 f;
AFS 14.8 kbp

Avg. quality 0.46;
size 349 kbp, 22 f;
AFS 15.8 kbp

Avg. quality 0.39;
size 261 kbp, 14 f;
AFS 189 kbp

Avg. quality 0.39;
size 337 kbp, 17 f;
AFS 20.2 kbp

Avg. quality 047;
size 287 kbp, 18 f;
AFS 15.7 kbp

Avg. quality 0.50;
size 372 kbp, 23 f;
AFS 16.5 kbp

4%

4%

18 %

25%

24%

35%

33%

42%

12%

17 %

6%

9%

18%

27 %

0.5%

0.9%

9%

15%

18%

28%

19%

28 %

7%

11%

0.6 %

0.7%

11%

18%

8.1X

45X

1.9X

1.6X

1.4X

1.2X

1.7X

1.5X

1.7X

1.6X

9.9X

12.3X

1.7X

1.5X

0.04X

0.02X

1.1X

0.9X

2X

1.7X

0.7X

0.2X

0.1X

5.7X

4.6X

19f|245 kbp

22f|326 kbp

23f|332kbp

25f|378 kbp

23f|325 kbp

26f|367 kbp

24f|342kbp

26|380kbp

21| 285 kbp

24f|338kop

16| 269 kbp

18f|320kbp

23f|322kbp

25f|368 kbp

66 %

63 %

68 %

67 %

70%

70%

70%

69 %

69 %

68 %

63 %

60 %

69 %

68 %

1.29

1.23

0.76

0.74

0.74

0.68

0.67

0.94

092

0.85

0.87

0.77

0.75

-1.15

-0.83

-0.65

-0.51

-0.04

-0.35

-0.26

-0.56

-0.35

-0.97

-0.28

Statistics are reported for each map card of HCT116 cell line using the relaxed filtering (r) and the stringent filtering (s), similarly as in Table 3 These results further suggest a mean yield of 1.25x and 1x for (r) and (s), respectively, in
terms of aligned coverage of the human genome per map card using OPTIMA
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Fig. 5 Trade-off for partial overlap detection. Number of (correct) partial overlaps found for each sliding-window size using OPTIMA-Overlap, for both
simulated (Drosophila and human scenarios (a) and (b)) and real maps over simulated and real scaffolds (K562 human cancer cell line), respectively

be needed for sufficient aligned coverage of the human
genome to enable structural variation analysis. By analyz-
ing the alignment rate increase of OPTIMA compared to
Gentig, a 1.5 to 2.9 times increase on average, we com-
puted the corresponding cost reduction to be 33-66 %,
with an average cost reduction of 54 % for relaxed filtering
of data (r) and 49 % for stringent filtering (s). These results
suggest that for structural variation analysis on the human
genome, particularly for cancer genomes, OPTIMA can
significantly reduce project costs (in the tens of thousands
of dollars) while enabling faster analyses of the data.

Conclusion

With the availability of new mapping technologies (for
example, Nabsys) and greater use of existing ones to com-
plement high-throughput sequencing, there is a critical
need for robust computational tools that can combine
genomic mapping and sequence data efficiently. In this
work, we introduce two new alignment tools that address
this need for a wide range of applications, from genome
assembly to structural variation analysis. Our benchmark-
ing results provide evidence that these methods outper-
form existing approaches in sensitivity and runtime while
providing highly precise alignments in a range of exper-
imental settings. Similar results are also seen in real

datasets from human cell lines, suggesting that they could
help in significantly reducing the cost of optical mapping
analysis and thus increase its usage.

In the development of OPTIMA and OPTIMA-Overlap,
we establish two key new ideas for map alignment. The
first is the introduction of composite seeds, an idea
that echoes the idea of spaced seeds in the context of
continuous-valued sequence alignment. Composite seeds
allow us to develop efficient seed-and-extend aligners for
map-to-sequence alignment of erroneous mapping data.
We believe that similar ideas can be applied for map-
to-map alignment and de novo assembly of experimental
maps. The second concept is the development of a con-
servative statistical testing approach that does not require
knowledge of the true distribution of errors or an expen-
sive permutation test to evaluate the uniqueness and
significance of alignments. This allows us to significantly
reduce the runtime cost of this step without sacrificing
specificity or the ability to be agnostic with respect to
error rates. Although our experiments with real data in
this work were limited to data generated on the Argus
system from OpGen, similar ideas (with minor varia-
tions) should also be applicable to data generated by other
technologies such as the Irys platform from BioNano
Genomics.

Table 5 Comparison of methods for overlap map-to-sequence alignment

Algorithm Drosophila (A) Drosophila (B) Human (A) Human (B) Human real data
E p E p E p E p E

OPTIMA-overlap 91 100 53 98 72 929 29 97 23

Gentig v.2 (d) 69 100 29 93 51 93 19 83 14

Likelihood-overlap (d 4 a) 59 74 36 52 21 41 9 26 12

The precision of overlap alignments (P, in percentages) and the number of overlap alignments that lead to (correct) extensions (E, absolute values) as a measure of sensitivity
(correctness is only known for simulated datasets) are shown. The best values across methods are highlighted in bold
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In future work, we plan to implement further runtime
and memory optimizations to OPTIMA and OPTIMA-
Overlap and to explore their use for super-scaffolding of
large genomes as well as for studying genomic rearrange-
ments in cancer.

Availability and requirements

¢ Project name: OPTIMA: Index-based
map-to-sequence alignment in large eukaryotic
genomes

¢ Project home page: http://www.davideverzotto.it/
research/OPTIMA, https://github.com/verznet/
OPTIMA
Operating system: Platform independent
Programming language: Java 7+
Other requirements: Java Development Kit 7+,
Apache Commons Math 3.2, CERN Colt 1.2.0

e License: LGPL (Lesser General Public License) 2.1,
OSI compliant

® Any restrictions to use by non-academics: none

Availability of supporting data

Snapshots of the code and benchmarking and real datasets
are available from the GigaScience GigaDB database
[29, 30].

Additional file

Additional file 1: Supplementary material. Supplementary notes and
figures to accompany the main manuscript. (PDF 32358 kb)
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