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Abstract

Background: Transition from a lizard-like to a snake-like body form is one of the most important transformations in
reptilian evolution. The increasing number of sequenced reptilian genomes is enabling a deeper understanding of
vertebrate evolution, although the genetic basis of the loss of limbs in reptiles remains enigmatic. Here we report
genome sequencing, assembly, and annotation for the Asian glass lizard Ophisaurus gracilis, a limbless lizard species
with an elongated snake-like body form. Addition of this species to the genome repository will provide an excellent
resource for studying the genetic basis of limb loss and trunk elongation.

Findings: O. gracilis genome sequencing using the Illumina HiSeq2000 platform resulted in 274.20 Gbp of raw data
that was filtered and assembled to a final size of 1.78 Gbp, comprising 6,717 scaffolds with N50 = 1.27 Mbp. Based
on the k-mer estimated genome size of 1.71 Gbp, the assembly appears to be nearly 100% complete. A total of
19,513 protein-coding genes were predicted, and 884.06 Mbp of repeat sequences (approximately half of the genome)
were annotated. The draft genome of O. gracilis has similar characteristics to both lizard and snake genomes.

Conclusions: We report the first genome of a lizard from the family Anguidae, O. gracilis. This supplements currently
available genetic and genomic resources for amniote vertebrates, representing a major increase in comparative
genome data available for squamate reptiles in particular.
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Data description
Ophiosaurous gracilis genomic DNA was extracted from
the tail of a single male lizard collected from the Tibetan
Plateau and used to construct seven paired-end Illumina
libraries with insert sizes ranging from 180 bp to 20 kbp.
To construct small-insert libraries (180, 500, and
800 bp), DNA was sheared to the target size range using
Covair S2 (Covaris, Woburn, MA, USA) and ligated to
adaptors. For long-insert libraries (2, 5, 10, and 20 kb),
DNA was fragmented using a Hydroshear system (Digilab,
Marlborough, MA, USA). Sheared fragments were biotin
labelled at the ends and fragments of the desired size were
gel purified. A second round of fragmentation was then
conducted before adapter ligation. Both libraries were se-
quenced on an Illumina HiSeq2000 Genome Analyzer
(Illumina, San Diego, CA, USA), with 100 bp and 90 bp
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sequencing for short insert size libraries (180–800 bp) and
large insert size libraries (2–20 kbp), respectively. A total
of 274.20 Gbp of raw data was generated, from which
147.08 Gbp of ‘clean’ data was obtained after removal of
duplicates, contaminated reads (reads with adaptor se-
quences), low quality reads (with Solexa quality scores
(Phred64) of less than 7 for >60% and >80% of bases for
short-insert libraries and long-insert libraries, respectively)
and reads with more than 10% ‘N’ bases. The O. gracilis
genome size was estimated to be approximately 1.71 Gbp
using a k-mer-based approach [1]. Based on this estimate,
the clean data corresponds to approximately 86-fold
coverage of the O. gracilis genome. High-quality reads
were used for genome assembly (contig and scaffold con-
struction) and gap closure was performed using the
SOAPdenovo package and default parameters except that
the k-mer size was set at 63 [2]. The final assembly had a
total length of 1.78 Gbp, comprising 6,715 scaffolds as-
sembled from 135,863 contigs, with the longest scaffold
size being 6.68 Mbp. The N50 sizes for contigs and
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Table 2 Summary of mobile element types

Type Length (kb) Percentage of genome (%)

DNA 56,874 3.19

LINE 670,619 37.65

SINE 32,019 1.80

LTR 114,739 6.44

Other 177 0.01

Unknown 160,545 9.01

Total 884,057 49.63
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scaffolds were 23.41 kbp and 1.27 Mbp, respectively.
Given the genome size estimate of 1.71 Gbp, genome
coverage by the final assembly was probably complete,
although this is probably a slight overestimate due to
possible overlaps between some of the scaffolds and/or
misassembly of some heterozygous alleles. Completeness
of the assembly was confirmed by the successful mapping
of up to 97% of reads from short insert libraries. Collect-
ively, this data indicates that almost complete O. gracilis
genome coverage was obtained.
Protein-coding genes were predicted and annotated by a

combination of homology searching and de novo predic-
tion using AUGUSTUS [3]. To search for homologous
gene models, the genome assembly was queried against a
database containing protein sequences and gene tran-
scripts from three other squamate reptile species (Anolis
carolinesis, Ophiophagus hannah, and Python molurus
bivittatus) and four other tetrapod vertebrates (Gallus
gallus, Homo sapiens, Taeniopygia gutta, and Xenopus
tropicalis). This resulted in identification of a total of
19,513 protein-coding genes in the O. gracilis assembly,
with an average of seven introns per gene. The gene
length ranged from 137 to 96,389 bp, with an average
of 1,506 bp; the average exon and intron length was
186 and 3,809 bp, respectively (Table 1).
Genomic repeat elements in the O. gracilis genome as-

sembly were also identified and annotated. RepeatMasker
software version 3.2.7 [4] was used to search for repeat
elements using the RepBase library (version 16.10) [5]. We
also constructed a de novo repeat sequence database
for the O. gracilis genome using LTR-FINDER [6] and
RepeatModeler [7], and used this library to identify
additional repeat elements using RepeatMasker. By
combining the data obtained from both repeat element
annotation approaches, a total length of 884.06 Mbp of
the O. gracilis genome was identified as repetitive. Re-
peat annotations accounted for approximately 49.63%
of the entire genome assembly, which is remarkably
higher than estimates for other squamate reptiles, the
anole lizard (~30.4%) [8] and both of the available
snake genomes (the python (~27.60%) [9] and cobra
Table 1 Global statistics of the O. gracilis genome

Statistic Value

Size (Gb) 1.71

Scaffold number 6,715

Scaffold N50 (Mb) 1.27

Gene number 19,513

Average gene length (bp) 1,506

Average intron number 7

Average intron length (bp) 3,809

Average exon length (bp) 186
(~31.28%) [10]). The repeat element landscape of O.
gracilis mostly consists of retrotransposons, including
long interspersed elements (LINEs), short interspersed
elements (SINEs) and long terminal repeats (LTRs).
LINEs represented the most abundant class of retro-
transposons, occupying 37.65% of the genome, while
the other repeat elements (SINE and LTR) comprised
1.80% and 6.44%, respectively (Table 2). DNA transpo-
sons were particularly rare, forming only 3.2% of the
genome.
In summary, we report the first annotated anguid lizard

genome sequence assembly, to supplement the existing
amniote genome resources in which squamate reptile se-
quences are sparsely represented. Despite the distant
phylogenetic relationship [11], the morphology of the
Asian glass lizard O. gracilis is highly convergent with that
of snakes, including the lack of limbs and an elongated
body. We therefore expect the genome of this species to
be particularly useful for future comparative genomic
analyses to identify the molecular basis of limb loss and
body form evolution in squamate reptiles, and vertebrates
in general.
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