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Abstract

From the initial arguments over whether 12 to 20 subjects were sufficient for an fMRI study, sample sizes in
psychiatric neuroimaging studies have expanded into the tens of thousands. These large-scale imaging studies fall
into several categories, each of which has specific advantages and challenges. The different study types can be
grouped based on their level of control: meta-analyses, at one extreme of the spectrum, control nothing about the
imaging protocol or subject selection criteria in the datasets they include, On the other hand, planned multi-site
mega studies pour intense efforts into strictly having the same protocols. However, there are several other combinations
possible, each of which is best used to address certain questions. The growing investment of all these studies is delivering
on the promises of neuroimaging for psychiatry, and holds incredible potential for impact at the level of the individual
patient. However, to realize this potential requires both standardized data-sharing efforts, so that there is more staying
power in the datasets for re-use and new applications, as well as training the next generation of neuropsychiatric
researchers in “Big Data” techniques in addition to traditional experimental methods. The increased access to thousands
of datasets along with the needed informatics demands a new emphasis on integrative scientific methods.
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The history of Magnetic Resonance Imaging (MRI) studies
in biomedical and psychological research is one of increas-
ingly widespread and sophisticated applications. From ini-
tial publications of a single or handful of subjects, a classic
paper [1] argued that at least 12 subjects were needed to
identify an effect in functional MRI data; indeed, analyses
with fewer than 20 subjects are still common, (e.g., [2]).
But in recent years, studies 600 or more scanning samples
collected on a single scanner are appearing (e.g., [3]).
The Enhancing Neuroimaging Genetics through Meta-
Analysis (ENIGMA) meta-analysis approach used data
from over 10,000 individuals, pulling from multiple legacy
datasets and scanners [4]. There are a number of ap-
proaches to large-scale neuroimaging studies; they are not
interchangeable, as they have complementary strengths
and weaknesses. However, the growing tendency toward
large-scale studies and data analysis brings with it certain
calls to action for the field of neuroimaging in clinical
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research as it moves into the realm of recognizable “Big
Data” [5].
Why has large-scale imaging come about?
The statistical mantra is that more subjects means more
power; and how many subjects are needed depends, of
course, at least in part on the effect size of the question
under study. To ascertain where in the brain functional
MRI (fMRI) signal changes are related to different con-
ditions in a simple cognitive task, 10–15 subjects may be
sufficient; studies of the neural correlates of auditory
hallucinations in psychotic populations have largely
pulled from smaller samples of 1–10 [6], though larger
studies of 15–30 have been painstakingly collected [7,8].
The Functional Imaging Biomedical Informatics Re-
search Network (FBIRN), in one of the first “multi-site”
fMRI studies, collected 200–300 patients with schizo-
phrenia and controls using in the same fMRI protocol
across multiple universities, motivated in part by incon-
sistencies found in smaller samples regarding frontal
cortex function in fMRI studies of schizophrenia [9,10].
Larger-scale neuroimaging studies are also motivated on
occasion by a desire to expand the clinical picture of the
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sample, providing a larger variability in symptom profiles,
for comparisons of clinical variation within a single-
diagnosis sample [11] or for longitudinal prognosis predic-
tions in the face of high individual variation [12].
A similar sample size of several hundred is often

needed for the most basic analyses of genetic effects on
imaging measures, such as testing the relationship be-
tween variation at a single genetic locus and the BOLD
signal during working memory [13,14], or to identify the
combined effects of selected multiple genes on brain
structural variation [15]. However, genetic effects are no-
toriously small and unreliable; to examine neuroimaging
effects of the entire genome rather than targeted subsets
of genes, data from tens of thousands of subjects are re-
quired [4]. These latter are truly large-scale studies.

Categories of large-scale imaging studies
There are some useful categories of design for imaging
datasets of 100 or more subjects, considering the level of
control and planning that is used. The most controlled
are the planned, coordinated and often multi-site im-
aging studies. Less controlled are the Aggregated Mega-
analyses, in which existing, often legacy datasets with
similar imaging techniques and sample populations are
combined for analysis. The next is Opportunistic studies,
which are often seen at institutions or combinations of
institutions that make their imaging data available for
mining, without regard for similar sample populations
or imaging protocols. Historically, the most common
method, that does not control the collection of imaging
data or aggregate it in one place at all, are Meta-analyses,
which can be either ad hoc or prospective. We consider
each of these in turn.

Planned studies
Planned studies can be large scale while being collected at
a single site, using a consistent protocol for both subject
recruitment and data collection. Examples of this can
range from several hundred cases vs. controls [16,17], to
the Genetics of Brain Structure (GOBS) dataset of encom-
passing more than 1,000 subjects from a multi-pedigree
study of heart disease [18], or the Philadelphia Neurodeve-
lopmental Cohort with 1,445 imaging datasets on a single
scanner [19]. In the last 15 years, the ability and the will to
collect structural, functional, diffusion and perfusion
imaging data across multiple imaging centers has devel-
oped, with FBIRN collecting several hundred patients
with schizophrenia and controls across eight centers in
the United States [10,11], the Multisite Clinical Imaging
Consortium (MCIC) doing the same across four centers
[20], the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) collecting 800 subjects longitudinally over 50
centers [21,22], and the PREDICT-HD data collecting
over 1,400 subjects longitudinally for ten years across
32 imaging centers, even more impressive given the rar-
ity of Huntington’s Disease [23]. This phenomenon is by
no means limited to the US, of course; the Thematically
Organized Psychosis (TOP) study in Norway collected
over 600 imaging datasets on patients with schizophre-
nia, bipolar disorder and controls [24]; the IMAGEN
study is an international and longitudinal imaging and gen-
etics study of mental health in adolescents, with several
thousand subjects participating [25]. These are merely ex-
amples, not an exhaustive list.
There are pros and cons to these studies, of course.

Notably, these studies are very expensive. In a multi-site
study, effort and expense is not simply a linear sum of
doing the same but smaller study at each site; the coord-
ination, planning, and equilibration of methods and
equipment across sites [26], the infrastructure for mov-
ing data to central locations for analysis, and the time
involved in keeping everyone up to date on any changes
in the protocols, forms a necessary and costly overhead
for these tightly organized studies. However, there is as
good a guarantee as one can get in the real world that
these samples are comparable across sites. Sources of
variance have been minimized as much as possible. The
subjects are recruited using the same criteria, the scan-
ners are calibrated to the same levels, the protocols are
identical wherever possible, the data are analyzed using
the same quality assurance methods and software [27].
Just as clinical trials for FDA approval are controlled
and prescribed, these kinds of studies are, effectively,
FDA clinical trials methods translated as closely as pos-
sible to imaging studies–and the investment by the fund-
ing source is similarly demanding.

Aggregated mega-analyses
Aggregated Mega-analyses are studies that combine
existing datasets without prior coordination. They are
commonly limited to a single imaging modality, for ex-
ample T1-weighted structural images or resting state
fMRI, without requiring that the imaging parameters be
the same across datasets. They may be limited to a par-
ticular clinical population, or that the data include a par-
ticular set of clinical assessments, without requiring that
all subjects have been recruited the same way or that the
same diagnostic criteria are rigidly applied. The confu-
sion between schizophrenia and schizoaffective diagno-
ses is a standard example: some investigators combine
both diagnoses in their samples, while others keep them
separate. In a planned multi-site study, that point would
be standardized across subjects; in an aggregated mega-
analysis, one is often stuck with the ambiguity.
A notable example of an aggregated dataset and mega-

analysis is the 1,000 Functional Connectomes project
[28], which collated 1,414 subjects’ resting state fMRI
data across 35 imaging centers worldwide, without
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regard to imaging protocol. The only constraints they
set were that subjects be healthy controls over 18 and
under 60 years old. They identified an underlying, robust
infrastructure of resting-state signals across the brain
that has been the canonical result since their publica-
tion. They were able to set the foundation for the effects
of age in that range, gender, and the similarity of results
across different analysis methods for the resting state
brain in healthy subjects.
The advantage to this approach is clearly the ability to

collate large datasets fairly cheaply, from investigators
who are willing to share. The Autism Brain Imaging
Data Exchange (ABIDE) dataset of autism imaging [29],
for example, includes resting state fMRI data from over
1,000 participants aggregated across 16 different sites,
and since its release in 2012, has resulted in six pub-
lished papers on the aggregated set, with many more in
preparation. In schizophrenia studies, Cota et al. (under
review) [30,31] has aggregated structural imaging data
from over 1,800 subjects from eight legacy studies to
evaluate gray matter loss. The recently released Consor-
tium for Reliability and Reproducibility (CORR) dataset
[32] collated structural and functional imaging data from
over 1,600 subjects, available to the community. All of
these are imaging and related data that have been
already collected through other funding sources; the cost
involved for the aggregations is mostly the personnel
and time needed to send and receive the datasets for
analysis, process and curate them, and the analysis time
and effort. While the curation process can be lengthy,
time-consuming and frustrating, it pales in comparison
to the original subject recruitment and scanning costs
for large scale studies.
The challenges for this method are primarily the in-

creased variability in the images, since the imaging proto-
cols vary widely. As noted extensively by Glover et al. [26],
changes in scanning parameters can create protocol-
specific deformations in the image, as well as changes in
the relative contrast between tissues, and thus affect esti-
mates of any brain measure being used, whether func-
tional or structural. The papers cited so far on aggregated
mega-analyses deal with inter-site variation in a number
of ways, often through modeling site as a covariate or fac-
tor in the statistical model. However, the loss of sensitivity
through increased variability has to be weighed against the
increased in generalizability. More subtle effects may be
lost, but those that remain are more robust.
The differences in sample characteristics are also a

challenge; the sample sizes drop immediately as soon as
more is required than the image and some basic demo-
graphic information. Studies were conducted with differ-
ent clinical and cognitive assessments, which are generally
not comparable. The advantage of power in the large sam-
ple sizes is then lost when more nuanced questions need
to be asked about duration of illness, the role of cognitive
deficits, or aspects of the subjects’ medical history, and the
data simply aren’t there.

Opportunistic studies
Opportunistic studies refer to the growing practice of
scanning centers creating institutional data repositories.
The Mind Research Network in Albuquerque (NM,
USA), has a policy that all scans performed on its scan-
ner are part of its data repository for controlled sharing
[33]. The four MRI scanners at the Donders Institute for
Cognitive Neuroscience have provided structural im-
aging data for the Brain Imaging Genetics (BIG) study,
from the pool of images from all college students being
scanned for many other research projects [34]. The Uni-
versity of California, Irvine (UCI), and the University of
Southern California (USC) have agreed to develop a re-
pository of non-emergency MRI scans from both institu-
tions [35]. The studies that come from these sorts of
repositories are opportunistic in the sense that the sub-
jects are whoever was scanned for other studies, and the
imaging protocols are whatever was used for that study.
In certain cases, such as the federated repositories from
the Mind Research Network, and the UCI/USC network,
a standardized if minimal imaging protocol can be
agreed on, so that all non-emergency subjects receive
the same structural and diffusion tensor imaging or rest-
ing state functional imaging protocol.
The effort behind these institutional-level data sharing

methods can be extensive, requiring high-level adminis-
trative involvement, support, and assurances to develop
a system for managing all the imaging data collected at
an institution, as well as intrusion into the individual in-
vestigator’s methods, adding verbiage about data sharing
to the protocol and consent forms, and limiting perhaps
the scanning protocols that can be used. However, the
repositories that result from it can be immense. The
One Mind for Research project is leveraging these sorts
of efforts, with the goal of collating datasets from several
thousand traumatic brain injury (TBI) subjects from par-
ticipating trauma centers and emergency room locations,
as well as developing a registry over time of 25,000 pa-
tients seen for a suspected TBI and their computerized
tomography (CT) scans [36].
While these approaches in many cases share the disad-

vantages of aggregated analyses—varied imaging proto-
cols in some cases, incomplete clinical pictures in
others–examples of the findings resulting from these ef-
forts demonstrate their value. In a paper by Allen et al.
[3], resting state fMRI datasets from over 600 healthy
controls ranging in age from 12 to 71 years were pooled
for an extensive and foundational study of the effect of
age and gender on resting state networks and their inter-
connectedness. While this is not the size of the
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Functional Connectomes sample, it has the advantage of
being collected using a standardized imaging protocol.
In contrast, the aggregated BIG sample of 1,400 healthy
controls is not standardized, but access to the original
imaging data from a single institution allowed an in-
depth analysis of the widely ranging imaging parameters
on various gray matter measures [34].

Meta-analysis
Meta-analyses of published neuroimaging studies are im-
portant for developing consensus in the field. Standard
meta-analyses combine results across smaller studies,
identifying where the weight of the evidence falls in the
case of conflicting results. These are post hoc meta-
analyses, extracting published results and effect sizes
from the literature; given the unknown number of un-
published analyses, these methods must account for the
“desk drawer” phenomenon by various means. A par-
ticularly fruitful approach was developed by Laird and
colleagues [37,38], which leveraged the standardized sys-
tems for reporting fMRI results as coordinates in a
three-dimensional brain space. The ability to statistically
combine these coordinate-based analyses across studies
has since resulted in over 400 publications with meta-
analyses in schizophrenia, anxiety disorder, executive
function, and many more topics [39]. Meta-analytic
techniques have been applied to structural and task-
based functional imaging; the rising popularity of resting
state fMRI with its numerous analytical techniques
[2,3,29,40,41], particularly multivariate ones, provides a
particular challenge for post hoc meta-analyses. Overall,
however, the advantages of post-hoc meta-analyses are
well known, as are the disadvantages so these are not
reviewed here.
A different approach is a prospective meta-analysis

(along the lines of [42]), in which the results are not
chosen from the published literature. Rather, legacy
datasets are analyzed individually using a standardized
statistical model, and the individual results are then
pooled as in a usual meta-analysis. The largest project of
this sort in neuroimaging to date is the ENIGMA pro-
ject, which successfully collated statistical results from
planned, consistent analyses of 10,000 subjects from 17
studies worldwide to identify the genetic effect on hip-
pocampal volume and overall brain size [4]. The EN-
IGMA technique asked researchers to segment their
structural imaging data into various brain region vol-
umes using a standardized protocol (in one of two well-
known software systems, Freesurfer or FSL [43,44]),
perform a standardized quality assurance protocol to re-
move bad data, and then they leveraged the standardized
outputs from those software systems to develop scripts
or programs in R [45], which would run over an entire
dataset with minimal input from the dataset owner.
Other than imaging data quality, image processing steps
and analysis, there was very little control. The subjects
could be anybody—the studies included patients with
schizophrenia, attention deficit depression, autism, as
well as “controls”—though they were required to be gen-
etically Caucasian for analysis of genetic effects on the
brain volumes. And notably, in this approach the data
are not shared or centralized for analysis. The analysis
techniques for each dataset are standardized, and the re-
sults from each dataset are what is shared. The meta-
analysis is then performed on the effect sizes from each
dataset.
This “crowd sourcing” approach to imaging genetics

has continued successfully [46]. The ENIGMA project
now has a number of collaborative working groups
varying in size, exploring these same issues in distinct
neuropsychiatric disorders [47]. There are papers in de-
velopment on prospective meta-analyses of structural
brain measures in schizophrenia, attention deficit syn-
drome, major depressive disorder, and bipolar disorder,
with the combined expertise of hundreds of profes-
sionals in these fields.
Like the other uncontrolled designs, the prospective

meta-analysis approach can be hampered by the variabil-
ity in the collected data. Currently there are no standard
batteries of clinical, cognitive, and socioeconomic mea-
sures that are applied to all imaging studies of schizo-
phrenia; for example, individual studies are designed to
answer specific questions, and collect the relevant data
for their hypotheses. One dataset may include an exten-
sive cognitive battery, while another does not include
even basic IQ measures. Another dataset may have an
equally extensive cognitive battery, but not the same
one, leading to its own issues in comparability of mea-
sures. Like the mega-analysis or opportunistic study de-
signs, these meta-analyses can end up with a “lowest
common denominator” approach, including only basic
covariates such as age and gender, unable to count on
basic information about the duration of illness or medi-
cations being comparable or even available across the
datasets.
The cost of a crowd-sourced approach, such as the

ENIGMA model is in unpaid labor in many cases. EN-
IGMA and its subprojects are not planned multi-site
studies, with staff at every site funded to work on their
part of the analyses. They are almost entirely a volunteer
army, of researchers willing to participate because it is a
good experience, it is a project that can not be com-
pleted any other way, they believe in data sharing and
aggregation, and are willing to leverage other funding
sources to make it happen. While that may change in
the future, the current model (as of the summer 2014)
includes largely donated time and resources. That may
not be an approach that supports growth in the long



Turner GigaScience 2014, 3:29 Page 5 of 8
http://www.gigasciencejournal.com/content/3/1/29
term, though the current level of energy for these pro-
jects from around the world is notable.
Some of the differences across study designs have been

summarized in Table 1. These level descriptions are
somewhat arbitrary; within any given category there will
be some studies that are easier and some that are harder
to perform, for example, based on the particular design
and requirements.

The rise of large-scale studies leads to big data methods
in neuroimaging
The goal of large-scale clinical neuroimaging is often the
largest sample size available. Datasets from multiple re-
search centers, multiple cities, and various countries are
more likely to capture the range and variance of the clin-
ical population than are smaller samples from a single
center. Given that neuroimaging studies often pull from
a limited sample of the population to begin with—sub-
jects who are capable of undergoing neuroimaging—the
more representative the sample can be, the better. All of
these methods of large-scale data collection are geared
toward this end, whether the goal is a genetically well-
powered sample or simply capturing enough of the clin-
ical variation. The studies presented, as examples above,
have all been markedly successful in achieving these
ends.
All the study designs reviewed here allow both replica-

tion and discovery. It is not only the planned studies
which can test hypotheses; it is not only the less con-
trolled categories of studies which support exploratory
analyses. The ABIDE dataset, for example, while the re-
sult of aggregating legacy data, has been used to explore
specific hypotheses regarding the relationship between
functional connectivity of the posterior temporal sulcus
and emotion recognition in autism [48]. The FBIRN III
study protocol, in contrast, was designed primarily to
Table 1 Comparison of study categories

Category Comparability across datasets
or sources

Control
over analyses1

D
a

Planned
studies

Highest possible similarities in data Highest C
t

Aggregated
mega-analyses

Moderate; Some filtering of available
datasets for improves comparability

High L

Opportunistic
studies

Moderate, but can be high if scanning
centers agree to use minimal standard
protocols

High M

Meta-analyses
(post-hoc)

Lowest Lowest L

Meta-analyses
(prospective)

Lowest High L

1: Control over analyses covers whether planned analyses across each subset of the
agreed upon across groups performing the analyses.
2: Ease refers in a general way to the efforts involved in design and calibration, data
clinical population or obtaining any necessary funding, for example.
examine the interaction between emotional distraction
and working memory encoding in schizophrenia, with
resting state data as an extra scan; however, the resting
state data has resulted already in four papers published
or under review, with more in preparation, exploring the
relationships between various imaging features and dis-
ease state or clinical measure [40,41,49,50]. The ADNI
and COBRE multi-site datasets in Alzheimer’s Disease
and schizophrenia, respectively, have both been used in
“challenges” open to all comers who have data mining
techniques to identify who has the disease and who
doesn’t, in support of new diagnostic techniques [51,52].
The original study designers and data collectors for any
given project cannot have all possible analysis and sta-
tistical techniques at their fingertips; therefore, these
data repositories are immensely valuable as ongoing re-
sources for the research community.
While the idea of a large and representative dataset is

appealing, a challenge with data collected over multiple
imaging sites is the variability in the resulting images
that is not due to subject differences, but simply due to
the scanner and imaging parameters—i.e., increased
noise that could swamp more subtle disease-specific ef-
fects. Planned studies with tightly controlled protocols
minimize this variability, giving the best chance for iden-
tifying smaller individual differences [53]. A good ex-
ample is the ADNI study previously mentioned, a large
and carefully planned multi-site study of subjects with
Alzheimer’s Disease (AD), subjects with Mild Cognitive
Impairment, and healthy controls. Their methods have
allowed them to identify clusters of pre-diagnosed sub-
jects with different prognoses, some of whom are more
likely to convert to full AD than are others [54].
Studies with less controlled designs must work with

the data they can access, which entails only identifying
variables with effects that are robust to the sources of
epth of phenotyping
vailable

Ease of collecting a large sample2

an be very deep but specific
o the study hypotheses

Most difficult

ow to Moderate Moderately easy; it requires existing
datasets and investigators willing to
share them

oderate Moderately difficult; it often requires
institutional arrangements to get started

owest Easiest; all published results that fit the
meta-analytic question are available

owest Moderate; it requires existing datasets and
teams to analyze them in collaboration

dataset are done the same way, either by a central authority or planned and

aggregation and analysis, apart from study specific issues of the particular
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imaging or clinical data collection heterogeneity. In com-
bining common variables across legacy data, the more
opportunistic studies often cannot benefit from the deep
phenotyping that can make analyses like ADNI’s more
rich. However, planned studies often do not collect
broadly useful measures either, as noted previously.
They focus on the hypotheses they were funded to
study, and often do not have additional information
about the subjects that would make the data re-usable
for another question; in contrast, institutional approaches
can leverage that breadth. Through minimal standard im-
aging protocols and planned data sharing approaches,
datasets with consistent imaging methods and a wide array
of clinical measures can be potentially aggregated for data
mining.
The rise of these large scale studies, hand-in-hand with

the recognized emphasis on sharing the resulting data, has
also provided numerous data repositories and an increased
awareness of the data’s value [55,56]. MRI data repositories
that are open to the research community are funded by
the National Institutes for Health (NIH), individual insti-
tutions, or individual laboratories (for example [57-61]).
However, the current efforts in data sharing are often
hampered by the lack of standardization not only in what
is collected, but also how it is described. Data integration
and mediation is an ongoing challenge that is a large part
of the field of neuroinformatics (see e.g., [62-66]). The data
are not necessarily compatible when combined across
different sources, with many missing or questionable
data points.
A primary challenge, besides the noisiness of the data

collection methods and the ability to find datasets others
have already collected, is the science of working with”big
data”. What questions can be asked given the data that
has already been collected and made available? Given
one’s scientific question; could the hypothesis be tested
in available data, rather than designing a new study from
scratch? How does one handle the noise, uncertainty
and missing data? This requires the next generation of
neuropsychiatric researchers to understand that these
big datasets exist; how to use the neuroinformatics tools
and methods to find them, as well as the best practices
for aggregating the data or performing meta-analyses
while addressing the inescapable sources of variance.

Conclusions
Large-scale neuroimaging studies of varying designs
have been increasingly applied to neuropsychiatric re-
search. The studies vary from completely controlled data
collection and analysis, to post hoc meta-analyses with
no control over those experimental parameters. Each
category of experimental design has its strengths and
weaknesses in its ability to address sources of variation,
and its ability to identify subtle effects of interest.
Successful data integration and mediation will make the
re-use of these datasets more viable and valuable. An im-
aging dataset of 20 subjects can provide a few findings,
but an underpowered study has an increased risk of inflat-
ing its estimates of effect size, leading to a lack of reprodu-
cibility [67]. But, in conjunction with 10 or 100 more
studies of similar size and type, it can reliably help address
questions of clinical importance about symptom varia-
tions, prognosis or genetic influences. There were 12,000
papers published in English in 2012 as found in PubMed
using the query “((human brain mapping) OR (fMRI)
AND (brain AND MRI)”. Even if only one-third of them
represent unique imaging datasets, there are clearly a
plethora of imaging datasets of the human brain in various
states that could be shared, reused or aggregated for novel
analyses.
Training in experimental psychology and cognitive

neuroscience often focuses on the details of experimen-
tal design for de novo data collection and analysis. How-
ever, while good experimental design is key, de novo data
collection need not be. Neuroimaging researchers need
to take a page from the sciences of climatology and geol-
ogy, from economists and others who cannot always ma-
nipulate the environment in a precisely controlled
manner to test their models. We are now at a point in
the neuroimaging domain where neuroimaging re-
searchers should first ask whether their question can be
refined or even answered in the agglomeration of data
previous researchers have collected. An even stronger
approach would be to consider, when collecting new data,
not only how to use existing data to supplement the pro-
posed data collection, but how the new data could be used
by others in the future, and how best to design the experi-
ments and resource allocation for the project to facilitate
that re-use. This is, in effect, combining computational
and semantic web methods with statistical methods, for a
“big data” approach to available neuroimaging data.
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