Skip to main content

Table 1 Six real benefits from genome Russia project to Russia, to science, and to the world genomics community

From: The Genome Russia project: closing the largest remaining omission on the world Genome map

1. Low frequency and local variants that are discovered in population genome projects can be used to screen individuals with genetic disorders in genome wide association studies (GWAS), in clinical trials, and in genome assessment of proliferating cancer cells [1, 2]. Thus, Russian biomedical researchers will receive the benefit of an information resource that will build the baseline for future studies, including advances in precision/personalized medicine.

2. Russia has a history of population admixture, with the modern Russian population comprised of genetic contributions from three main ancestral ethnicities: European (Slavic, Baltic and Germanic), Uralic (Finno-Hungarian), and Altaian (Turkic), with the possible addition of traces from peoples that occupied the Eurasian Arctic and Siberia in the past (Fig. 1c). As yet, this genome admixture has not been well documented, and presents a new and unique opportunity to study population history in the wake of the great human migrations, the Black Death, the Great Silk Road diaspora, or recent demographic perturbations of the twentieth century.

3. An admixture history combined with the diverse environments faced by the local populations in Russia create a unique opportunity for disease gene discoveries through the use of mapping of admixture disequilibrium or admixture mapping [7]. This approach is known to be more powerful than a GWAS in homogeneous panmictic populations, and has been used to discover a number of health-related mutations in other populations (as per, for example, [8]). Given the difference in historic selection pressures, genome admixtures specific to Russia will contribute a wealth of new information bringing forth different risk and/or protective alleles that do not exist nor associate with disease, elsewhere in the world.

4. Studies of population ancestry and admixture in Russia would not be limited to modern humans. Recent reports have uncovered the exact details about when Neanderthals and modern humans interbred and have even suggested important disease-fighting genes derivative of those pre-historic encounters [6]. Much of the Neanderthal heritage may still be unaccounted for, as recent reports keep discovering new genes originating from this ancient admixture, and the spread of the Neanderthal is now documented as far as the Altai Mountains in Siberia [6]. The geographic source of Denisovan DNA is also Russian in origin, while its contribution is mainly found in Melanesia [5]. Given that most of the genetic landscape of Russia is little explored, we cannot state with any certainty that another great discovery is not hidden behind that great “wide gap” on the global genetic diversity map (Fig. 1a, b).

5. Thorough understanding of human migration and evolution requires a Russian genome project, given that the peopling of the Arctic and the American continents, came from ancestral populations in Russia, specifically those in Siberia. An analysis of the variety of populations in Russia should therefore provide key information about this stage of human migration.

6. Engaging Russia scientists and communities in an international project like this would help integrate its scientists into the world genomics community. The scientific output and training in Russia has diminished since the fall of the USSR in 1991 but the sustaining enormous  intellectual potential has since become one of the world’s best secrets. Genome Russia will formally join the International 1,000 Genome project, with their thoroughly vetted and widely agreed ethical guidelines (www.1000genomes.org). Further, Genome Russia will be built upon the open release/access philosophy, a trend that is gaining momentum, but suspicion remains, as trust between Russia and Western governments has become challenged by the recent political exchanges [9].