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Abstract

applications of the Optical Mapping system.

fluorescence intensity

Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a
comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical
component of Optical Mapping system is the image processing module, which extracts single molecule restriction
maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this
review, we describe robust and efficient image processing technigques to process these massive datasets and extract
accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few
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Background
Optical Mapping [1-3] is a high-throughput, single-
molecule system that generates ordered restriction maps
(also called Rmaps) from high molecular weight genomic
DNA molecules, ranging in size from 300 kilobases to a
few megabases. The Rmaps are then used for the con-
struction of genome-wide physical restriction maps using
computational approaches, which provide insights into
long range genome structure and genome variation. Opti-
cal mapping is made possible by the integration of many
diverse components that draw from surface chemistry,
microfluidics, fluorescence microscopy, image processing
and other computational approaches. The physical maps
generated using Optical Mapping have served as scaf-
folds to guide and/or validate DNA sequencing based
genome assemblies [4—7]. More recently, Optical Map-
ping, because of its ability to resolve repeat rich and
other low complexity genomic loci, has been used to iden-
tify structural polymorphisms in normal human genomes
[3] and structural variants in disease-risk [8] and cancer
genomes [9, 10].

An outline of Optical Mapping is provided in Fig. 1.
Here, we provide a brief description of the system. The
first step in Optical Mapping is DNA extraction. Because
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high molecular weight DNA is required as a substrate,
very gentle DNA extraction methods like liquid lysis
of cell suspensions or preparation of DNA inserts [11]
are commonly used. Next, DNA is presented on glass
cover slips that are acid cleaned and derivatized with
a mixture of aminosilanes. The derivatization process
imparts a positive charge to glass surfaces, which allows
DNA immobilization [5, 12-14]. DNA presentation is
accomplished via capillary flow in microchannels, which
are formed at the interface of derivatized glass surfaces
adhered to a microfluidic device fabricated using soft
lithography approaches [2]. Use of a microfluidic device
allows for massively-parallel, high throughput deposition
of single DNA molecules on derivatized glass surfaces.
DNA presentation accomplishes two goals: elongation
and immobilization. DNA elongation allows the imaging
of molecular cleavage events once intact DNA molecules
are digested using restriction endonucleases, and is an
important requirement for generation of Rmaps. DNA
immobilization serves to fix DNA in place, which is
important to ensure that i) the linear order of DNA frag-
ments from each DNA molecule is preserved; ii) the
digested molecules can be imaged easily; and iii) the frag-
ments generated after restriction digestion do not desorb
and get lost before imaging. Both these steps, elonga-
tion and immobilization, are carefully controlled to ensure
that the biochemical action of restriction endonucleases
is preserved and that the DNA molecules are optimally
stretched out to be able to generate useful Rmap data.
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Fig. 1 Schematic of the various steps in the optical mapping system

The elongated and immobilized DNA molecules are
digested with a restriction endonuclease of choice.
Upon digestion, the double-stranded DNA digestion sites
present as gaps that are formed between fragments due
to DNA relaxation at cut ends [1, 12]. Next, digested
DNA is stained using intercalating fluorochrome YOYO-1
[13] and imaged using automated laser-illuminated epi-
fluorescence microscopy systems [2, 15-17]. Custom in-
house software allows automated imaging of an entire
array of microchannels with very little setup time. Once
the images have been collected, they are automatically
processed using custom image processing software to
generate Rmaps, which are obtained as ordered series
of fragment sizes derived from digested single DNA
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molecules [2, 3]. Once a large dataset of Rmaps has been
collected using the Optical Mapping system, a computa-
tional pipeline that uses Bayesian inference approaches
[18] and cluster computing is used to assemble the Rmaps
into genome-wide contigs and generate genome-wide
consensus maps [3, 19-21].

The description above highlights that the image pro-
cessing module acts as a filter/bridge within the Optical
Mapping pipeline that extracts the useful essence, the
Rmaps, from massive optical microscopy datasets. Image
processing is a critical contributor to successful imple-
mentation of Optical Mapping and works in synchrony
with the other components of the system. The image
processing module is the central focus of this manuscript.

Review

Image processing methodology

The goal of the image processing module is to accurately
and robustly extract the Rmaps data from image datasets.
An image processing module for Optical Mapping must
provide the following capabilities (Fig. 2):

e Skeletonization: The single pixel centerline for each
fragment is detected as a column ordered connected
component or skeletal segment.

e Tiling: A single Rmap can span multiple images. In
order to extract multi-frame Rmaps, a mosaic of
images acquired from a single microchannel is
created by aligning adjacent images using the skeletal
segments.

e Grouping: The skeletal segments are grouped such
that each group corresponds to fragments from the
same DNA molecule.

e Sizing: Groups of skeletal segments that correspond
to standards are detected; conversion factors for
these skeletal segments are computed using
integrated fluorescence intensity and the known size
of fragments for the standards. The estimated
conversion factor is applied to construct Rmaps (in
kilobases) for genomic DNA molecules.

Different versions of image processing software for
Optical Mapping have been implemented over the last two
decades. During the early days of Optical Mapping useful
map data was obtained using completely manual methods
for detecting and sizing the fragments. Improvements to
the image acquisition [15] and image processing software
[16] culminated in the development of the semi-automatic
Autovis system [5]. Lim and coworkers described Semi-
Autovis in [5], where they used it to generate R-maps
for the E. coli genome. As the name suggests, Semi-
Autovis was a semi-automatic image processing system,; it
required user identification of the approximate location of
suitable molecules. Once such locations were identified,
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Fig. 2 Schematic of the image processing module that extracts Rmaps from images

Semi-Autovis handled skeletonization, grouping and siz-
ing automatically. This system also dealt with crossing
molecules, bright spots near molecules and other object
imperfections, which was not possible with prior image
processing systems. For E. coli, a total of 840 R-maps were
collected (494 with Xhol; 346 with Nhel), of which 471
were included in the final contigs (251 for Xhol and 220
for Nhel), reflecting a contig rate of 56 %. Although Semi-
Autovis was much faster than previous systems, there
was clear need for a completely automated image pro-
cessing system for Optical Mapping of larger genomes.
PathFinder [2, 17] was the first fully featured, automated
image processing system developed for Optical Mapping
and was instrumental is making large scale Optical Map-
ping projects feasible. The image processing methodology
detailed below is inspired by the techniques implemented
in the PathFinder system.

Skeletonization

The first step extracts skeletal segments that correspond
to the digestion induced fragments of DNA molecules. An
image pixel I(r, c) is a skeletal pixel if all of the following
conditions are satisfied:

I(r,¢) = I(r—1,¢) (1)
I(r,c) = I(r+1,¢) (2)
I(r,c) = I(r — 2,¢) > & (3)
I(r,c) = I(r +2,0) > 9, (4)

where I(r, ¢) represents the image intensity at pixel coor-
dinates (r,c) and ¢ is an user specified threshold that
denotes expected falloff in gray intensity over two pix-
els. The local neighborhood used for the computation is
shown in Fig. 3(a). The above constraints and geometry
for the neighborhood are based on the facts that (i) the
DNA molecules are deposited along the direction of flow
in microchannels and (ii) the ideal fluorescence intensity
profile falls off rapidly from the peak intensity, perpendic-
ular to the deposited molecules. This physically motivated
local computation results in an intuitive, efficient and
robust direct gray scale skeletonization technique.

While the conditions in Eqgs. 1 and 2 maintain connect-
edness of the skeletal pixels in a segment, skeletons that
are not one pixel wide may also be produced. Hence, for
each segment, the one pixel wide skeleton is extracted as
the shortest path between the segment end points using
Dijkstra’s algorithm [22]. The accurate localization of end
points is aided by the increased intensity pixels due to coil

relaxation at enzyme cleavage sites. An example extracted
skeleton with end points is shown in Fig. 3(c).

Tiling

The image acquisition system captures multiple overlap-
ping images along each microchannel. Accordingly, long
DNA molecules that span several frames are imaged,
which necessitates tiling. As a linear stage is employed to
acquire overlapping images, the geometric transformation
that is used to model the tiling of adjacent images is a
translation.

The translation between adjacent frames is estimated
using the left and right end points of the extracted skele-
tal segments as landmarks. Given two adjacent images,
the translation that matches the maximum subset of
landmarks from one image to the other is taken as the
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Fig. 3 Skeletonization. a The local neighborhood in which the
inequality constraints (1)-(4) are applied to detect skeletal pixels. b An
example image patch. ¢ Extracted skeleton in the example image
patch. Skeletal pixels are shown in blue. Red and green lines
represent the left and right endpoints of each skeletal segment
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tiling transformation. As the amount of overlap between
images is engineered into the acquisition process (typi-
cally 25 %), search for the tiling translation is localized
to a small range of values. Having the tiling information
between pairs of images is required to extract Rmaps that
span multiple images. It is not required to explicitly create
a single mosaic of the entire channel (see Fig. 4).

Grouping

Skeletal segments that come from the same DNA
molecule are incrementally grouped and column ordered
using spatial proximity of skeletal segment end points and
directional agreement with respect to fluid flow based
deposition. Specifically, the grouping constraints are:

o A skeletal segment can belong to utmost one group.

o Adjacent skeletal segments in the same group have
no overlap.

e For segments S; and S;, the ordered grouping (S;, Sy)
is valid if S, is the best segment to pair with S; when
“growing” S; on its right and vice versa. When
determining the best segment both spatial proximity
and orientational similarity of the segments (via
straight line fits) are used.

The constraints and examples of grouping in the presence
of distracting artifacts are depicted in Fig. 5.

Sizing
The two main factors that influence fragment sizing are:
(i) intensity fluctuations due to local variations in the elon-
gation of the DNA molecule or staining, and (ii) regions
of increased gray level intensity adjacent to enzyme cleav-
age sites due to coil relaxation. Fragment sizes obtained
using integrated fluorescence values are robust to these
local effects. In order to convert the integrated fluores-
cence values into kilobases, standards are used to used to
estimate the conversion factor.

Within the grouped skeletal segments, groups that cor-
respond to the standards are identified based on the
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expected number of fragments and their relative lengths.
A mask that extends for two pixels on either side of the
skeletal pixels is created and the fluorescence intensities
in this region are summed to yield the integrated fluo-
rescence values. The conversion factor Cy; that maps the
integrated fluorescence values into kilobases is estimated
(using the fragments of the standards) as the ratio:

size of fragment in kilobases

(5)

Cwp = .
ko integrated fluorescence value of fragment

The estimated Cy, is used to construct Rmaps from
groups of ordered skeletal segments by converting inte-
grated fluorescence values (computed using the same
masks used for the standards) to kilobases (Fig. 6).

Discussion

The skeletonization technique presented here robustly
detects each fragment as a single skeletal segment. This
technique can be easily adapted to other optical single
molecule platforms such as nanocoding [23] and Irys [24]
by evaluating the skeletonization conditions (Eqs. 1-4) in
a direction perpendicular to the dominant direction of the
presented molecules.

The spatial proximity and orientation similarity param-
eters that are used for grouping adjacent skeletal segments
are empirically derived. For two skeletal segments to be
grouped, we typically require spatial proximity to be less
than 9 pixels (at 100 nm per pixel) and orientation differ-
ence to be less than 15 degrees. Higher enzyme restriction
density can confound these thresholds as smaller frag-
ments can “float” away and may not be ideally localized
for Rmap grouping. In such cases ambiguities in group-
ing are handled using bioinformatics filters [25]. It should
be noted that perfect handling of this situation is highly
non-trivial; however when intact molecules (without
restriction induced fragments) are localized in nanoslits
([23, 24, 26]), grouping becomes trivial.

Fig. 4 Tiling. Example of tiling three images from a microchannel. A horizontal span of about 140 microns is covered by each image. The blue
outlines represent the image borders. The estimated tiling transformation provides the translation of frames to achieve this seamless mosaic, but
the mosaic itself is not explicitly constructed. Estimating the tiling transformation is required to extract multi-frame Rmaps
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Fig. 5 Grouping. a Segments a and ¢ are grouped as this grouping
provides the best continuity in terms of adhering to the constraints of
spatial proximity and orientation similarity. The grouping (g, b)
satisfies the spatial proximity constraint but in terms of orientation
similarity, it is less optimal that the grouping (g, ¢). The grouping
(a,d) is invalid as we require the segment d to be strictly
non-overlapping with segment a. b, € Two examples of accurate
grouping in the presence of distractors. The adjacent fragments are
colored differently to aid visualization

Uncertainties in sizing are caused by variations in image
intensities, ambiguities in localizing end points and dis-
tracting elements that can intersect molecules. The inte-
grated fluorescence based sizing is highly resilient to the
first two sources of uncertainties. Nearby and intersecting
distractors are handled by “flagging” the affected frag-
ment(s) in the Rmap and addressed using bioinformatics
[25].

We highlight the effectiveness of the optical mapping
system in providing detailed characterization of structural
variants at the single molecule level using two exemplar
large scale studies ([3, 10]). For the 4 human genomes that
were studied in [3], over 95 % of fragments (> 10 kb)
were within 10 % of their corresponding reference frag-
ment size, indicating high accuracy in fragment sizing.
Collectively for the four genomes, close to 27 % of all
marked up molecules were assembled into contigs for
final assemblies. In a more recent study that character-
ized a highly reorganized multiple myeloma genome [10],
close to 29 % of all marked up molecules were assem-
bled. We would like to stress that the performance metrics
that we have mentioned encompass errors at the differ-
ent stages of optical mapping, namely: DNA presentation,
digestion, labeling, surface inconsistencies, imaging and
image processing. While the effectiveness of the system
as a whole is quantifiable (and ultimately what matters),
it is still unclear how a stage-wise characterization of
errors can be performed especially in the context of huge
interesting genomes (the genome size regime in which
optical mapping has the greatest impact).
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The time taken to process the images from a single
channel is typically faster than the time taken to collect
the images. Hence we have not employed parallelization
strategies for the image processing. Parallelization strate-
gies will be highly attractive as the speed at which data
collection improves. The skeletonization, tiling and sizing
modules described in this paper can easily and trivially
exploit data parallelism techniques.

Applications

Fully automated image processing allowed for rapid analy-
sis of DNA molecules deposited in microchannels, which
helped us understand key physical characteristics of the
deposition process (such as DNA elongation and depo-
sition density along the microchannel) and design opti-
mal operating parameters for Optical Mapping [2]. This
enabled the generation of massive Rmap datasets, which
facilitated high resolution analysis of genomes of various
sizes.

Rmap assemblies provide long range structural infor-
mation about the genome. Consequently, they generate a
scaffold that can be used to verify or guide DNA sequenc-
ing based genome assemblies. Optical Mapping was first
used to verify sequencing based chromosomal [27] and
genome assemblies [4]. With an increase in throughput, it
was used to generate physical assemblies to aid sequenc-
ing based genome assembly for many microbial genomes.
These include some bacterial genomes like Deinococcus
radiodurans [4], Escherichia coli O157:H7 [5], Yersinia
pestis [28] and Rhodobacter sphaeroides 2.4.1 [29]. By
comparing different bacterial strains to identify genomic
differences, Optical Mapping was used for comparative
genomics [17]. More recently, plant genomes like rice
[6] and maize [7, 30] and normal [3] and cancer [9]
human genomes have been mapped. These assemblies
have helped in validation of sequencing based assem-
blies and have also provided high-resolution scaffolds for
gap closure and for correcting sequencing based assembly
errors [31].

In the past decade, advances in genome analysis meth-
ods have highlighted the widespread presence of struc-
tural changes in normal and disease-affected human
genomes [32-34]. However, these variants have been
found to be selectively enriched in segmentally dupli-
cated and other low complexity regions of the genome
[32, 35]. Because of the inability of short-read DNA
sequencing data to uniquely differentiate these regions,
true positives are difficult to discern in these regions.
Additionally, false negative rates as high as 37 % have
been reported [36], which could still be an underestimate.
It is because of these reasons that different sequencing
based structural variation calling algorithms show very lit-
tle overlap [37]. Optical Mapping of human genomes has
uncovered a wide array of structural variation in these
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Fig. 6 Sizing. a The two pixel wide mask used to compute the integrated fluorescence values for fragments. The darker grey pixels represent the
skeletal pixels. Shown here is a fragment that spans 7 pixels. b An example three fragment, Bsu36l digested, Lambda DNA standard (= 48.5 kb) used
to estimate Cyp. The expected fragment sizes (in kilobases) are: 26.718,7.601 and 14.183. Standards can be selected based on the experiment.

¢ A portion of a Rmap with fragment sizes using the estimated Cy, to determine sizes in kilobases from integrated fluorescence values

genomes. Teague et al. identified thousands of structural
polymorphisms, ranging in size from a few kilobases to
megabases in a complete hydatidiform mole and three
lymphoblast-derived cell lines [3]. The authors also iden-
tified many structural variants that could not be detected
by other genomic analysis platforms. Later, Ray et al. stud-
ied tumor genomes from two oligodendroglioma patient
samples, the first use of Optical Mapping to study a solid
tumor genome, to reveal many somatic structural variants
and copy number heterogeneity [9]. More recently, we
integrated long-range structural variation analysis from
Optical Mapping and short range variation analysis from
DNA sequencing data to comprehensively characterize
variation in a multiple myeloma genome at different stages
of disease progression [10].

Many other genome analysis platforms have been devel-
oped in the recent years to understand long range genome
structure and structural variation. BioNano Genomics
Irys technology has been used to identify structural
variants in human genomes [24]. Pacific Biosciences
SMRT sequencing [38] and Oxford Nanopore Tech-
nologies sequencing [39] have increased the average
read length from hundreds of bases to tens of kilo-
bases. Although affected by significantly higher error
rates when compared to their short read sequencing
counterparts, these platforms can provide long-range
sequencing information about genomes. Moving forward,
developing computational methods and pipelines that
integrate results from mapping- and sequencing-based
platforms, or better, leverage raw datasets to improve
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sequencing pipelines, will help us learn more about whole
genomes.

Conclusions

The successful implementation of the automated image
processing techniques described in this review has
allowed the high resolution analysis of many complex
genomes. It has also enabled the study of the physi-
cal characteristics of DNA deposition using microfuidic
systems. In addition variants of the image processing
techiques described in this review have been incorporated
into the Nanocoding system, a higher resolution and more
accurate successor to Optical Mapping [23, 26].
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