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Brainhack — a novel conference model for the open neuroscience
research community [1] — exploded in 2015. With three-day events
in Honolulu (June), Montréal (July), and across the Americas (eight
participating sites in October) [http://events.brainhack.org/], a commu-
nity that first began only a few years ago around the shared spirit of
collaboration and an ethos of open science has taken resolute form.
As Brainhack events were founded on the principle that content
should emerge through the onsite interaction of participants, the in-
novative event structure demanded a different publication form.
Inverting the model of conference proceedings, where submissions
are triaged in preparation for the meeting, we developed the Brain-
hack Proceedings to rather mark the achievements, outputs, and
ideas that emerged as the meeting’s result.
Post-conference papers were solicited from participants at any of the
events held in 2015. All submissions were peer-reviewed in the
Brainhack Proceedings Github repository [https://github.com/
Brainhack-Proceedings-2015] using an innovative open-review
process. In keeping with the culture of Brainhack, we took advantage
of the open platform provided by Github [http://github.com] to encour-
age a productive dialogue between authors and reviewers.
This first issue of Brainhack Proceedings includes 23 project papers —
presenting an overview of the broad range of interests, content, and
achievements that converged at Brainhack events this past year.
With at least four international events scheduled for 2016 [http://
events.brainhack.org], we hope that this publication format will
provide an ongoing record of the growth within our community.
Snapshots of all the projects and supporting information can be
found in the GigaScience, GigaDB, repository [2].
For more information visit the Brainhack home page [http://brain-
hack.org].
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Introduction
The past several decades have seen an explosive growth in the num-
ber of published neuroimaging studies. In concert, the demand for
freely available and openly accessible ‘study data’, that would facili-
tate future reanalysis, meta-analysis, hypothesis testing and repurpos-
ing has also soared. Here we report on developments made to
Brainspell[1] one of several web-based initiatives (e.g. BrainMap[2],
NeuroVault[3], Neurosynth[4]) that allow individuals to search
through and organize massive numbers of neuroimaging studies and
results in meaningful ways.
Distinct from other databases, Brainspell [http://brainspell.org] is the
first web-based initiative to allow users to manually annotate and
curate machine-parsed data, as well as manually extend the database
via its crowdsourcing user interface. The goal of our Brainhack pro-
ject was to improve Brainspell’s interface. We worked to (a) provide
supplementary manual data edit options (b) facilitate efficient man-
ual database extension, and (c) aid meaningful organization of data.
Approach
We used GitHub to manage the client and server code, and to coord-
inate its development.
Results
Supplementary manual data edit options
In the original version of Brainspell, users were able to edit experi-
ment (table) title, caption and coordinates for each article. We added
four supplementary options. In particular, users are now provided
with enhanced ‘edit feedback’:

� Feedback indicating when a field is editable or has been
successfully saved. Editable text fields now turn light grey,
while a successfully stored field loses its coloring. Storage of
fields can now be triggered by a tab key or by clicking
elsewhere, in addition to hitting return.

Users are also provided with additional edit options, specifically, the ability to:

� Add symbols to the title and caption fields.
� Remove empty tables.
� Add and remove rows from a table.
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Fig. 1 (abstract A1). 3D volume and mesh showing the aggregated
locations of a user/peer-defined collection (Aman_Metaanalysis)
containing 32 articles. This user has a total of two collections (or 2
lists), as indicated on the header row. The second collection is
named ‘test’. b Highlighted in yellow are the Split and Import links
associated with each table in Brainspell. Note: With the exception of
the Download link, peer-login is required to access all mentioned
Brainspell enhancements
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Database extension
While users were previously able to add new articles and their coord-
inate tables, the process was labor- and time-intensive, since each
value had to be manually entered. We implemented a more efficient
method to edit tables:

� Addition of an Import link to each table. When clicked it opens
a popup window where comma-separated text can be entered
and parsed.

Meaningful organization of data
Potential shortcomings of neuroimaging databases employing auto-
matic coordinate data extraction is their inability to segregate (i) mul-
tiple contrasts (e.g. within group, inter-group), and (ii) significant
versus nonsignificant coordinates, when present in a single table.
The following options were added to facilitate non-ambiguous data
organization (see Fig. 1):

� Addition of a Split link to each table.
� Fine-tuning the Split link enhancement to allow more than ten

splits.
� Option to add articles lacking PMID (or user-specific articles).
� Addition of a Download link to each article. When clicked

it downloads article title, reference, abstract, and tables.
� Creation of ‘article collection’ functionality. Users can now

store the results of their search into article collections.
Clicking on an existing collection brings back the corresponding
articles and re-computes the 3D volume and mesh of the
aggregated locations. Users can create and edit multiple
collections.

Conclusion
We performed ten enhancements to Brainspell and provided in-
structions of use in Brainspell’s wiki. We tested these enhance-
ments on Safari, Firefox and Chrome. Moreover, 25 articles were
manually added to Brainspell as part of our extended beta test-
ing phase. Our goal with these enhancements was to extend
the functionality, and ease of use of Brainspell for curating
machine-parsed neuroimaging data from a wide database of
studies.
During January 15 to February 5, 2016 alone, Brainspell was used in 282
sessions by 133 users who watched 1421 pages. Moreover, Brainspell
was forked to “BIDS-collaborative/Brainspell” which itself was forked by
approximately 10 data-science students to extend the platform.
Availability of supporting data
More information about this project can be found at: http://github.
com/r03ert0/brainspell-brainhack.
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Introduction
The goal of this project is to improve accessibility of open datasets
by curating them. “NiData” aims to provide a common interface for
documentation, downloads, and examples to all open neuroimaging
datasets, making data usable for experts and non-experts alike.
Approach
Open datasets promise to allow more thorough analysis of hard-to-
collect data and re-analysis using state- of-the-art analysis methods.
However, open datasets are not truly open unless they are easy to
find, simple to access, and have sufficient documentation for use.
Currently, publicly available data in neuroscience are scattered across
a number of websites and databases, without a common data for-
mat, no common method for data access, and varying levels of docu-
mentation. Datasets are being uploaded to public databases through
a number of initiatives, including OpenFMRI [1] and NITRC [2] In
addition, there are funded efforts for collecting data explicitly for the
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purpose of public sharing – most visibly in the Human Connectome
Project (HCP) [3] - but also in the Pediatric Imaging, Neurocognition
and Genetics (PING) study [4] There are a number of funded efforts
to collect old data and re-release as public databases, notably the
INDI [5] efforts (which include the popular ABIDE [6] and functional
connectomes 1000 datasets [7]). The BRAIN initiative [8] aims to col-
lect data that will be a challenge to store, let alone analyze. There
are even online journals focused on publishing datasets (e.g. Nature
Scientific Data), or with options to release data (e.g. F1000 “Data
Notes”).
NiData is a Python package that provides a single interface
accessing data from a variety of open data sources. The software
framework makes it easy to add new data sources, simple to de-
fine and to provide access to multiple datasets from a single
data source. Software dependencies are managed on a per-
dataset basis, allowing downloads and examples to use any pub-
lic packages without requiring installation of packages required
by unused datasets. The interface also allows selective download
of data (by subject or type) and caches files locally, allowing easy
management of big datasets.
Results
We focused on exposing new methods for downloading data from
the HCP, supporting access via Amazon S3 and HTTP/XNAT [9]. We
were able to provide a downloader that accepts login credentials
and downloads files locally. We created an example that interacts
with DIPY [10] to produce diffusion imaging results on a single sub-
ject from the HCP. We also worked at collecting common data
sources, as well as individual datasets stored at each data source,
into NiData’s “data sources” wiki page. We incorporated downloads,
documentation, and examples from the nilearn package and began
discussion of making a more extensible object model.
Since the hackathon, we have created such an object model and mi-
grated all code to use it, and a Sphinx- based website is under devel-
opment. The current object model makes it easier to write general-
purpose fetchers (e.g. HTTP, XNAT, Amazon S3) that can be extended
to access specific databases (e.g. COINS [11], LORIS [12], ADNI [13]).
Conclusions
Projects like NiData improve curated data access and increase the
effectivity of big data projects with open source data.
Availability of supporting data
More information about this project can be found at: http://
github.com/nidata/nidata
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Fig. 2 (abstract A3). C-PAC subject list builder using BIDS directory
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Introduction
Data acquired during neuroimaging experiments can be organized in
many ways. This stems from differences in scanner software, various
DICOM and NIFTI tools, and custom data organizing scripts within dif-
ferent laboratories. The Brain Imaging Data Structure (BIDS) specifica-
tion [1] provides a simple, straightforward solution to this problem by
introducing an intuitive standard for neuroimaging data organization.
The widespread adoption of BIDS can be facilitated through incorporat-
ing this standard into software projects used for neuroimaging analysis.
These software packages will in turn benefit from the homogenous
data structure and ease of specifying data acquisition parameters
afforded by BIDS. The goal of this Brainhack project was to integrate
BIDS into the Configurable Pipeline for the Analysis of Connectomes (C-
PAC) [2] a Python Package? built on Nipype [3] for the high-throughput
analysis of resting state fMRI data.
Approach
Processing data with C-PAC begins with specifying the paths of the
anatomical and functional files to be processed, along with their
corresponding acquisition parameters. This is accomplished in a
semi-automatic procedure in which the user specifies templates that
describe the file organization and then a script walks this structure to
find the data. The resulting subject list can then be partnered with a
pipeline configuration and submitted to C-PAC for processing. We
extended this functionality to natively understand BIDS, so that data
that conforms to this standard can be configured to run through C-
PAC with minimal user intervention.
C-PAC with BIDS
A BIDS flag was added to the subject list builder along with a text box
for the user to specify the base directory of the data file structure. The
BIDS file hierarchy is then traversed to build anatomical and functional
file pattern templates. These templates are returned to the main sub-
ject list builder function, which runs the same way as if using user spe-
cified file path templates. This approach minimized modifications to
the data-gathering algorithm while providing for a robust way to en-
sure all data is found and returned properly. Additional scanning pa-
rameters that are required to complete the processing (repetition time,
slice timing information, etc.) are read from BIDS specified JSON files
that are stored alongside the imaging data.
The new implementation takes advantage of one of many BIDS utilities
openly available: the BIDS meta-data tool [4] [https://github.com/INCF/
bidsutils] This tool provides the subject, session, and run-level indica-
tors to the builder without needing the user to manually enter any key-
words; it takes advantage of the fixed organization scheme and the
presence of JSON files to deliver all of this information reliably and effi-
ciently. The tool is written in Python, which provided for easy integra-
tion into the C-PAC source code. It works for BIDS datasets stored
locally as well as those available through remotely through Amazon S3.
Results
The updated C-PAC GUI reflects the “BIDS” and “Custom” options - as
seen in Fig. 2 - with the “Custom” option allowing users to specify their
data structure as in previous versions of C-PAC. In the future this option
would be more elegantly displayed via a radio button with the input
fields dynamically changing to reflect the type of input desired.
The code changes were fairly straightforward and were cleanly
inserted into the current builder module [https://github.com/FCP-
INDI/C-PAC/blob/test_dev/CPAC/utils/build_sublist.py] The implemen-
tation developed during Brainhack is feature full, but will require
more testing in the future.
Conclusions
Incorporating the BIDS subject list builder into C-PAC is a great step
forward in bringing the standard to a broader audience. Throughout
the integration process, other technologies were discovered that
could further enable input data gathering across a wide range of file
system types, including FTP, SFTP, Zip, S3, and an array of virtual file-
systems. With further development, the overhead of preprocessing
one's own neuroimaging data for discovery science can be minimized
so scientists can focus on the results.
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Introduction
Degree centrality (DC) [1] and local functional connectivity density
(lFCD) [2] are statistics calculated from brain connectivity graphs that
measure how important a brain region is to the graph. DC (a.k.a.
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global functional connectivity density [2]) is calculated as the number
of connections a region has with the rest of the brain (binary DC), or
the sum of weights for those connections (weighted DC) [1]. lFCD
was developed to be a surrogate measure of DC that is faster to cal-
culate by restricting its computation to regions that are spatially ad-
jacent [2]. Although both of these measures are popular for
investigating inter-individual variation in brain connectivity, efficient
neuroimaging tools for computing them are scarce. The goal of this
Brainhack project was to contribute optimized implementations of
these algorithms to the widely used, open source, AFNI software
package [3]
Approach
Tools for calculating DC (3dDegreeCentrality) and lFCD (3dLFCD)
were implemented by modifying the C source code of AFNI’s 3dAu-
toTcorrelate tool. 3dAutoTcorrelate calculates the voxel X voxel cor-
relation matrix for a dataset and includes most of the functionality
we require, including support for OpenMP [4] multithreading to im-
prove calculation time, the ability to restrict the calculation using a
user-supplied or auto-calculated mask, and support for both Pear-
son’s and Spearman correlation.
3dDegreeCentrality
Calculating DC is straightforward and is quick when a correlation
threshold is used. In this scenario, each of the .5*Nvox/(Nvox-1)
unique correlations are calculated, and if they exceed a user spe-
cified threshold (default threshold = 0.0) the binary and weighted
DC value for each of the voxels involved in the calculation are
incremented. The procedure is trickier if sparsity thresholding is
used, where the top P% of connections are included in the calcu-
lation. This requires that a large number of the connections be
retained and ranked - consuming substantial memory and com-
putation. We optimize this procedure with a histogram and adap-
tive thresholding. If a correlation exceeds threshold it is added to
a 50-bin histogram (array of linked lists). If it is determined that
the lowest bin of the histogram is not needed to meet the spars-
ity goal, the threshold is increased by the bin-width and the bin
is discarded. Once all of the correlations have been calculated,
the histogram is traversed from high to low, incorporating con-
nections into binary and weighted DC until a bin is encountered
that would push the number of retained connections over the
desired sparsity. This bin’s values are sorted into a 100-bin histo-
gram that is likewise traversed until the sparsity threshold is met
or exceeded. The number of bins in the histograms affects the
computation time and determines the precision with which ties
between voxel values are broken. A greater number of bins allow
the sparsity threshold to be determined more precisely but will
take longer to converge. Fewer bins will result in faster computa-
tion but will increase the tendency of the algorithm to return
more voxels than requested. The chosen parameters enable ties
to be broken with a precision of 1.0/(50*100), which in our ex-
perience offers quick convergence and a good approximation of
the desired sparsity.
3dLFCD
lFCD was calculating using a region growing algorithm in which
face-, side-, and corner-touching voxels are iteratively added to the
cluster if their correlation with the target voxel exceeds a threshold
(default threshold = 0.0). Although lFCD was originally defined as the
number of voxels locally connected to the target, we also included a
weighted version.
Validation
Outputs from the newly developed tools were benchmarked to
Python implementations of these measures from the Configurable
Pipeline for the Analysis of Connectomes (C-PAC) [5] using the
publicly shared Intrinsic Brain Activity Test-Retest (IBATRT) dataset
from the Consortium for Reliability and Reproducibility [6].
Results
AFNI tools were developed for calculating lFCD and DC from func-
tional neuroimaging data and have been submitted for inclusion into
AFNI. LFCD and DC maps from the test dataset (illustrated in Fig. 3)
are highly similar to those calculated using C-PAC (spatial concord-
ance correlation [7] 0.99) but required substantially less time and
memory (see Table 1).
Conclusions
Optimized versions of lFCD and DC achieved 4x to 10x decreases
in computation time compared to C-PAC’s Python implementation
and decreased the memory footprint to less than 1 gigabyte.
These improvements will dramatically increase the size of Con-
nectomes analyses that can be performed using conventional
workstations. Making this implementation available through AFNI
ensures that it will be available to a wide range of neuroimaging
researchers who do not have the wherewithal to implement
these algorithms themselves.
Availability of supporting data
More information about this project can be found at: http://github.
com/ccraddock/afni
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Table 1 (abstract A4). Comparison of the time and memory required
by the C-PAC and AFNI implementations to calculate DC (sparsity
and correlation threshold) and lFCD on the first resting state scan
of the first scanning session for all 36 participants’ data in the
IBATRT dataset

r > 0.6 r > 0.6 0.1 % Sparsity

Impl. Thr. Mem GB TD s Mem GB TD s Mem GB TD s

Python 1 2.17
(0.078)

67.7
(3.90)

5.62
(0.176)

342.2
(12.25)

2.16
(0.082)

88.3
(6.40)

C 1 0.84
(0.003)

62.6
(9.23)

0.85
(0.002)

86.3
(13.83)

0.86
(0.003)

8.8
(1.27)

C 2 0.86
(0.002)

39.0
(4.62)

0.86
(0.003)

38.2 (0.55) 0.86
(0.003)

5.1
(0.25)

C 4 0.86
(0.003)

18.2
(1.93)

0.87
(0.003)

19.0 (0.45) 0.87
(0.003)

4.3
(0.23)

C 8 0.87
(0.002)

11.2
(0.25)

0.87
(0.000)

11.3 (0.31) 0.87
(0.000)

4.1
(0.15)

Values are averaged across the 36 datasets and presented along with
standard deviations in parenthesis. Impl: Implementation, Thr: Number of
threads used to process a single dataset, Mem: average (standard
deviation) memory in gigabytes used to process a single dataset, TD: the
average (standard deviation) time in seconds to process a dataset. These
statistics were collected on a C3.xlarge Amazon Web Services Elastic
Compute Cloud node with 8 hyperthreads and 15 GB of RAM

Fig. 3 (abstract A4). Whole brain maps of binarized and
weighted degree centrality calculated with a correlation
threshold of 0.6 (a-b) and sparsity threshold of 0.1 % (c-d) and
binarized and weighted lFCD calculated with a correlation
threshold of 0.6 (e-f) averaged across maps calculated the first
resting state scan of the first scanning session for all 36
participants’ data from the IBATRT data
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Introduction
The purpose of this Brainhack project was to create a simple applica-
tion, with the least dependencies, for anonymization of DICOM files
directly on a workstation.
Anonymization of DICOM datasets is a requirement before an im-
aging study can be uploaded in a web-based database system,
such as LORIS [1]. Currently, a simple and efficient interface for
the anonymization of such imaging datasets, which works on all
operating systems and is very light in terms of dependencies, is
not available.
Approach
Here, we created a DICOM anonymizer that is a simple graphical
tool that uses PyDICOM [https://github.com/darcymason/pydicom]
package to anonymize DICOM datasets easily on any operating
system, with no dependencies except for the default Python and
NumPy packages. DICOM anonymizer is available for all UNIX sys-
tems (including Mac OS) and can be easily installed on Windows
computers as well (see PyDICOM installation [http://pydicom.read-
thedocs.org/en/latest/getting_started.html]). The GUI (using tkinter
[https://wiki.python.org/moin/TkInter]) and the processing pipeline
were designed in Python. Executing the anonymizer_gui.py script with
a Python compiler will start the program. Figure 4 illustrates how to
use the program to anonymize a DICOM study.
Results
This graphical tool, designed to be easy-to-use, platform independ-
ent and have minimum dependencies, produces two zip files. One
zip file includes the original DICOM files and the other contains the
anonymized DICOM outputs.
Conclusions
The DICOM anonymizer is a simple standalone graphical tool that fa-
cilitates anonymization of DICOM datasets on any operating system.
These anonymized studies can be uploaded to a web-based data-
base system, such as LORIS, without compromising the patient or
participant’s identity.
Availability of supporting data
More information about this project can be found at: http://github.-
com/aces/DICOM_anonymizer.
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Fig. 4 (abstract A5). How to use the DICOM anonymizer step
by step
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Introduction
Our ability to quantitatively study large-scale social and behavioural
phenomena such as peer influence and confirmation bias within
scientific circles rest on quality and relevant data [1] Yet the compil-
ation of specific coauthorship databases are often restricted to cer-
tain well-defined fields of study or publication resources, limiting the
extent and depth by which investigations can be performed. Ultim-
ately, we aim to understand how the social construct and its under-
lying dynamics influence the trajectories of scientific endeavors [2]
This work is motivated by an interest in observing social patterns,
monitoring their evolution, and possibly understanding the emer-
gence and spreading of ideas and their biases in the neuroimaging
community; central themes to deciphering facts from opinions. How-
ever, before being able to fully investigate and address these funda-
mental and inherently complex questions, we need to address the
extraction and validation of data. The goal of this project was to le-
verage publicly available information on Google Scholar (GS) to auto-
matically extract coauthorship networks.
Approach
The tool can be accessed through a public website [http://cos.der-
y.xyz]. The site is constructed using a set of openly accessible librar-
ies allowing the display of coauthorship networks as interactive
graphs [3] Visitors can peruse a set of pre-computed networks ex-
tracted using custom Python scripts designed to crawl GS based on
a set of predefined constraints (e.g. search topic, publication journal).
The proposed interface offers seamless manipulation to keep inter-
action straightforward and easy to use. The simplicity of the design
aims to reach a maximum number of users, assuming a minimal level
of technical knowledge.
Graph Construction:
Scholarly citations are commonly found in standardized format, sug-
gesting the structure can be reliably used within an automatic pro-
cedure. Moreover, while the result of typical search engines are not
structured towards data mining (i.e. mixture of natural language em-
bedded in semi-structured tags and page links), particular combina-
tions of HTML tags and CSS identifiers can be leveraged to extract
specific information. This simple scheme allows the reconstruction of
large-scale networks of collaborations. Interestingly, Google Scholar
also hosts individual pages for authors’ rich with pre-computed met-
rics of scientific productivity and impact (e.g. cumulative number of
citations, h-index, i10-index). This data can be further exploited to
structure and highlight part of the network.
Community Detection:
Scientific communities were detected using a greedy agglomerative
modularity optimization process [4]
Validation:
To assess the recovered network’s reliability we performed a spot
check on its content. First we examined the accuracy of 100 ran-
domly selected researchers from the network and sought after their
departmental affiliation and publication journals to confirm their
belonging to the broad field of neuroimaging. The dependence on
profile availability injects a strong negative bias. To better appreciate
the crawling ability to construct network we further compare with
the number of members having a Google Scholar page in the form
of a corrected accuracy.
Results
96 researchers were confirmed to have direct institutional affiliation
to neuroscience, psychology, or biomedical engineering departments
(see Fig. 5). The remaining 4 randomly selected researchers were
found to work in the fields of human genome sequencing, image
analysis, nano particles, and pharmacology. Note that these individ-
uals were located on the outskirts of the main graph. To further as-
sess completeness of the network, we compared results with faculty
rosters of 5 major neuroimaging institutes (Table 2).
Conclusions
Accuracy results suggest a sufficient number of individuals are regis-
tered through GS to make it a useful platform of discovery. Meticu-
lous inspection of the grouping suggest that communities typically
embed either a geographical or a topical component, that is to say,
certain communities are seemingly brought together by either prox-
imity or similarity of interest. With the increasing complexity of sci-
ence, finding accurate and relevant information on specific topics is
a challenging task. We feel that a better appreciation of the wealth
and variety of opinions within scientific communities may help enfor-
cing the notion that grand claims require grand evidence.
Availability of supporting data
More information about this project can be found at: http://github.-
com/sderygithub/Clubs-of-Science.
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Table 2 (abstract A6). Completeness study: accuracy between the
faculty roster of five major neuroimaging institutes and the
neuroimaging network

Institute Total
Count

Recovered On
Google
Scholar

Accuracy Corrected
Accuracy

McConnell Brain Imaging
Center, Montreal
Neurological Institute

12 7 9 58.33 % 77.77 %

Martinos Center for
Biomedical Imaging,
Harvard University

39 12 22 30.76 % 54.54 %

Cognitive-Neuroimaging
Unit, INSERM-CEA, France

15 7 8 46.66 % 87.50 %

Wellcome Trust Center for
Neuroimaging, University
College London

16 10 11 62.50 % 90.90 %

FMRIB, Oxford University 17 8 11 47.05 % 72.72 %

Totals 99 44 61 49.06 % 76.69 %

Fig. 5 (abstract A6). Coauthorship network for the field of
neuroimaging. Each disk represent a single researcher with its radius
encoding log10(Nc), where Nc is the number of citations. Edges
stand for a binary relation of coauthorship between two researchers
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Introduction
The purpose of developing yet another web-based image viewer, Nif-
tyView, is to use WebGL to take advantage of the parallel computing
power in Graphics Processing Units (GPU) hardware for the acceler-
ation of rendering and processing of medical images in web applica-
tions. Although several web-based medical image viewers such as
Papaya [https://github.com/rii-mango/Papaya], BrainBrowser [https://
brainbrowser.cbrain.mcgill.ca/] and Slice:Drop [http://slicedrop.com]
are currently available, the slow performance of the web-based appli-
cations is still one of the major limitations of web-based image
viewers. NiftyView is a free web application developed in JavaScript.
It has zero footprint; only a web browser and an Internet connection
are needed to run NiftyView. It’s advantageous over conventional
desktop applications in that NiftyView doesn’t require installation
and constant updates. The current version supports NIfTI [http://nifti.-
nimh.nih.gov] and DICOM [http://dicom.nema.org] format. As a min-
imal image viewer, it’s a convenient tool for users who need a quick
and easy tool for viewing medical images. Currently, the beta version
of NiftyView is freely available [http://www2.hawaii.edu/~weiran/
NiftyView.html].
Approach
NiftyView is developed in JavaScript with jQuery [http://jquery.com]
for HTML document manipulation and event handling, jQueryUI
[http://jqueryui.com] for user interface, and DicomParser [https://
github.com/chafey/dicomParser] for parsing DICOM files. It’s compat-
ible with popular web browsers including Internet Explorer, Safari,
Firefox, and Opera. Either DICOM or NIfTI files can be loaded by drag-
ging files into the browser window. Loaded images can be displayed
in single-slice mode or tiled mode. After loading, images are auto-
matically arranged according to the scan IDs for DICOM files and the
file name for NIfTI files, respectively. Current functions include image
zooming and adjustment of image brightness and contrast. The
number of image columns can be adjusted in the tiled mode to
maximize the use of the display space. The contrast and brightness
of images can be adjusted by clicking and holding the right mouse
button or using a double slider widget in the horizontal tool bar at
the top of the window. For proof-of-concept, functions such as pixel
windowing and scaling are programmed using WebGL by translating
the arithmetic operations in image processing to 3D graphics primi-
tives using WebGL’s programmable shaders. The pixel values of an
image are loaded into a frame buffer. A vertex shader is pro-
grammed to define vertices corresponding to the coordinates of the
image, and a fragment shader is programmed to perform arithmetic
operations, which are performed in parallel to a massive number of
image pixels.
Results
See Figs. 6 and 7.
Discussion
One of the major limitations of current web-based image viewers is
the slow performance compared to their desktop counterparts.
There are collective efforts in industry to develop new technolo-
gies such as WebAssmebly and WebGL to narrow this perform-
ance gap. The highly parallel nature in processing image pixels
independently allows the use of WebGL to achieve a significant
speedup, as shown in this abstract. Currently, there are several
similar existing web applications such as Papaya, BrainViewer,
and slicedrop.com, which are more mature and offer varieties of
features. However, the main goal of the continuing effort in the
development of NiftyView is to achieve a high performance for
image processing using GPU via WebGL. NiftyView has a minimal
boilerplate and can handle a large number of files with relative
ease. Future work will be focused on developing a WebGL-
accelerated version, adding more image processing features, and
adding support of accessing files stored in HIPAA (Health Insur-
ance Portability and Accountability Act) compliant cloud storage
services such as Box and Amazon S3. The stable version of Nifty-
View will be released under a General Public License that allows
end users to freely run, modify, and share the program.
Conclusion
NiftyView is a free and convenient web application for quick and
easy viewing of NIfTI and DICOM medical images. We have shown
that a factor of six to eight acceleration can be achieved using
WebGL for image processing.
Availability of supporting data
More information about this project can be found at: http://
www2.hawaii.edu/~weiran/NiftyView.html
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Fig. 6 (abstract A7). A few sagittal MRI images displayed in titled
mode after loading approximately 1,500 DICOM files from 11 MRI
scans. It took approximately ten seconds to load all the DICOM files
into NiftyView. The images are organized into different vertical tabs
by the sequence names stored in the DICOM files

Fig. 7 (abstract A7). Image of WebGL vs. Canvas Comparison.
Shows a comparison of processing time as a function of the number
of image pixels in JavaScript (blue) and WebGL (red). WebGL shows
a factor of six to eight accelerations
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Introduction
The goal was to convert the Human Connectome Project (HCP) Min-
imal Preprocessing Pipelines into Nipype code.
The HCP minimal preprocessing pipelines [1] represent a significant
advance in image processing pipelines in our time. They provide pre-
processed volume and surface data in native and atlas space, for
both functional and structural data. Nipype is an open source neuro-
imaging project for designing imaging pipelines which has been
around since 2011 and provides many excellent features for proven-
ance and reliability of processing pipelines [2]. Together, these two
pieces of software would allow for a more robust, more flexible syn-
ergy of pipeline design and operability.
Approach
The first goal was to train the would-be Nipype developers on the
Nipype python standards for writing and running interfaces. Once
trained, the plan was to implement the HCP scripts into Nipype
interfaces from the top-level inward to the sub-level scripts. The
secondary goal was to make these sub-level scripts more flexible and
require less specific scans to run the pipelines. The collection of nine
ultimate pipelines to implement were with or without T1s or T2s and
with or without Fieldmap or Reverse-Phase-Encode EPIs as seen in
Table 3.
Results
Conceptually these goals sounded reasonable enough to do all
HCP scripts at once during the hackathon, but the learning and
additional setup time was not accounted for, so the scope of the
project was too big for two days of on and off coding, even
among our eleven developers. Distributing Nipype knowledge
from two experts to nine novices over two days was not an easy
beginning task, but most of the novices had gained knowledge
of Nipype usage by the end of the hackathon. Some work began
during the hackathon converting HCP scripts into Nipype pipe-
lines, however not much progress was made due to the unantici-
pated large scope of work. The second day, an epiphany came
about that the original goal, as stated, would have only involved
making five top-level wrappers for the five HCP top-level scripts.
This also slowed some progress. The secondary goal of generaliz-
ing the HCP scripts was discussed, but not thoroughly explored
or documented. There has only been some progress in
generalization I am aware of in the Neuroimaging Lab (PI: Da-
mien Fair, PA-C, PhD), at OHSU. This turnout of developers during
an open hackathon is encouraging and demonstrates the import-
ance of trying to fuse these two systems (Nipype and the HCP
scripts) to work together. Work on the repository halted after the
hackathon, but the team is still available.
Conclusions
More work is needed to truly contribute back to the HCP Pipe-
lines https://github.com/Washington-University/Pipelines. The
greatest achievement of the hackathon project was forming a
collaborative team of interested Nipype developers who were
trained and are ready to continue collaborating across seven in-
stitutions. Future work will continue trying to achieve the ori-
ginal goals as stated, but may need an organizer to hold the
team accountable to deadlines. To get involved with this pro-
ject, please contact Eric Earl, earl@ohsu.edu.
Availability of supporting data
More information about this project can be found at: https://github.
com/ericearl/hcp2nipype-hack2015/
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EPI T1 T2 Diffusion Field Map Reverse Phase Encode EPI

N N N 1 0

N N 0 1 0

N 0 N 1 0

N N N 0 N
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N 0 N 0 N

N N N 0 0

N N 0 0 0

N 0 N 0 0
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Introduction
Resting-state fMRI (rsfMRI) data generates time courses with unpre-
dictable hills and valleys. People with musical training may notice
that, to some degree, it resemble the notes of a musical scale.
Taking advantage of these similarities, and using only rsfMRI data as
input, we use basic rules of music theory to transform the data into
musical form. Our project is implemented in Python using the midiu-
til library [https://code.google.com/p/midiutil/].
Approach
Data We used open rsfMRI from the ABIDE dataset [1] preprocessed
by the Preprocessed Connectomes Project [2]. We randomly chose
10 individual datasets preprocessed using C-PAC pipeline [3] with 4
different strategies. To reduce the data dimensionality, we used the
CC200 atlas [4] to downsample voxels to 200 regions-of-interest.
Processing: The 200 fMRI time courses were analyzed to extract pitch,
tempo, and volume— 3 important attributes for generating music.
For pitch, we mapped the time course amplitudes to Musical Instru-
ment Digital Interface (MIDI) values in the range of 36 to 84, corre-
sponding to piano keys within a pentatonic scale. The key of the
scale was determined by the global mean ROI value (calculated
across all timepoints and ROIs) using the equation: (global signal %
49) + 36. The lowest tone that can be played in a certain key was cal-
culated from (key % 12) + 36. The set of tones that could be played
were then determined from the lowest tone using a scale. For ex-
ample, the minor-pentatonic scale’s set of were calculated by adding
0, 3, 5, 7, or 10 to its lowest tone, then skipping to the next octave,
and then repeating the process until the value 84 was reached. An
fMRI time course was mapped to these possible tones by scaling its
amplitude to the range between the smallest and largest tones in
the set. If a time point mapped to a tone that was not in the set, it
was shifted to the closest allowable tone. An example of allowed set
of tones is shown in Fig. 8.
For tempo, we used first temporal derivative for calculating the
length of notes, assuming we have 4 lengths (whole, half, quarter
and eighth note). In the time course, if the modulus distance be-
tween time point t and t + 1 was large, we interpreted it as a fast
note (eighth). However, if the distance between t and t + 1 was close
to zero, we assumed it is a slow note (whole). Using this approach,
we mapped all other notes in between.
We used a naive approach for calculating volume in a way that
tackles a problem we had with fast notes: their sound is cut off due
to their short duration. A simple way to solve this is to decrease the
volume of fast notes. Thus, the faster the note, the lower the volume.
While a whole note has volume 100 ([0,100]), an eighth note has vol-
ume 50.
Finally, we selected the brain regions that will play. Users complain
when two similar brain regions play together. Apparently, the brain
produces the same music twice. However, when the regions are dis-
tinct, the music is more pleasant. Thus, we used FastICA [5] for
choosing brain regions with maximally uncorrelated time courses.
Results
A framework for generating music from fMRI data, based on music
theory, was developed and implemented as a Python tool yielding
several audio files. When listening to the results, we noticed that
music differed across individual datasets. However, music generated
by the same individual (4 preprocessing strategies) remained similar.
Our results sound different from music obtained in a similar study
using EEG and fMRI data [6]
Conclusions
In this experiment, we established a way of generating music with
open fMRI data following some basic music theory principles. This re-
sulted in a somewhat naïve but pleasant musical experience. Our re-
sults also demonstrate an interesting possibility for providing
feedback from fMRI activity for neurofeedback experiments.
Availability of Supporting Data
More information about this project can be found at: https://github.-
com/carolFrohlich/brain-orchestra
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Fig. 8 (abstract A9). a Correspondence between the original time
series of one ROI and the generated pitch. b The first 10 notes of
the same ROI as sheet music. c All possible piano keys the brain can
play, from 36 to 84 (in pink). We show in red all the possible tones
for a C Minor-pentatonic scale, in the range of 36 to 84. In that case,
the lowest key is 36. The keys that can be used are: 36, 39, 41, 42,
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82, and 84

Fig. 9 (abstract A10). Illustration of the highly comparative
approach to time-series data from neuroscience
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Introduction
The aim of this project was to demonstrate that an existing Matlab-
based package for implementing thousands of time-series analysis
methods, hctsa [https://github.com/benfulcher/hctsa] could be ex-
tended to a Python-based implementation, for potential future inclu-
sion into Nitime [http://nipy.org/nitime/].
Recent work has contributed a comprehensive library of over 35,000
pieces of diverse time-series data, and over 7,000 unique structural
features extracted from hundreds of different time-series analysis
methods [1] which can be explored through an associated website
[www.comp-engine.org/timeseries] and implemented using the
Matlab-based code package, hctsa [https://github.com/benfulcher/hctsa].
The hctsa software provides a systematic, algorithmic platform for
computing a wide range of structural properties from a single time
series, including basic statistics of the distribution, linear correlation
structure, stationarity, information theoretic and entropy measures,
methods from the physical nonlinear time-series analysis literature,
linear and nonlinear model fits, and others. Thus, hctsa can be used
to map a time series to a comprehensive vector of interpretable
structural features and these features can then be systematically
compared to determine and understand the most useful features for
a given scientific objective (e.g., features of an EEG signal that help
classify different patient groups).
In order to apply highly comparative time-series analysis in the
neuroscience community, it would be desirable to implement some
time-series analysis methods into Nitime [http://nipy.org/nitime/], a
Python-based software package for performing time-series analysis
on neuroscience data.
Implementation of useful time-series features into python, and po-
tential integration with Nitime, would not only facilitate their use by
the neuroscience community, but also their maintenance and devel-
opment within an open source framework.
Approach
An illustration of the approach is shown in Fig. 9
Each time series is converted to a vector of thousands of informative
features using the hctsa package; machine-learning methods can
then be used to determine the most useful features (e.g., that best
discriminate patient groups, and where in the brain the best discrim-
ination occurs).
In this project, we wanted to demonstrate a feasible pathway for in-
corporating these useful features into the Nitime package.
Results
I successfully implemented a handful of basic time-series analysis
functions from Matlab into python using partials (a python function
that freezes a given set of input arguments to a more general
function).
The proof-of-principle implementation has full support for vectors of
data stored in numpy arrays, and basic support for the Nitime data
format (extracting the data vector from the Nitime TimeSeries class
for evenly sampled data).
Conclusions
Our results demonstrate that time-series analysis methods, discov-
ered using the hctsa package [https://github.com/benfulcher/hctsa],
can be implemented natively in python in a systematic way, with
basic support for the time-series format used in Nitime.
This will help facilitate future work on time-series analysis to be in-
corporated straightforwardly into this open source environment.
Although there are no plans to reimplement the full hctsa feature li-
brary in python, our hope is that published work describing useful
time-series features (discovered using the hctsa library) can also con-
tribute to a Python implementation, to promote its use by the neuro-
science community.
Availability of supporting data
More information about this project can be found at: https://github.
com/benfulcher/hctsa_python
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Introduction
We aim at the large-scale, automatic sharing of software tools be-
tween neuroimaging processing platforms, which will increase the
relevance of such platforms by providing them with richer repositor-
ies of higher-quality tools. Currently, efforts are hampered by the re-
petitive porting of the same few tools in different platforms. During
the HBM 2015 Hackathon, we worked on the export of software tools
from the Nipype workflow engine [1] to the CBRAIN web platform
for distributed computing [2]. Nipype includes a large number of
tools that would be useful to CBRAIN users.
Approach
We developed nipype2boutiques, a tool to export Nipype interfaces to
the “Boutiques” tool description format (step 1. on Fig. 10.). Boutiques
descriptions are importable by CBRAIN and other platforms (Virtual Im-
aging Platform [3] and the Pegasus workflow engine [4]). They point to
a Docker image containing the implementation of the tool. nipype2-
boutiques relies on nipype_cmd a tool to run Nipype Interfaces as
Linux command lines. nipype2boutiques parses the inputs and outputs
of a Nipype interface and extracts their name, type, description and
position on the nipype_cmd command line. nipype2boutiques then
generates a Boutiques descriptor pointing to a Docker image where
the Nipype interface is available. Once a Nipype interface is exported
using nipype2boutiques it can be imported to CBRAIN.
Results
We tested nipype2boutiques on a few Nipype interfaces from the
FSL Nipype module. We exported 64 FSL tools automatically from
Nipype to CBRAIN, and made them available [https://github.com/gla-
tard/boutiques-nipype-fsl]. Limitations remain on the type of Nipype
interface that can be exported by nipype2boutiques: in particular,
InputMultiPath is? currently not supported, and output files have to
be written in the execution directory of the Nipype Interface.
Conclusions
We prototyped a software tool to export Nipype Interfaces as Bou-
tiques descriptors, which can be imported by CBRAIN and other plat-
forms. Although the solution is still limited to simple interfaces, we
believe that it has the potential to enable fully automatic tool sharing
between Nipype and CBRAIN. Future extensions of nipype2boutiques
will be published in the Nipype Github repository [https://github.
com/nipy/nipype]. We also plan on a tighter integration of Nipype
workflows in CBRAIN, following the model adopted in [5].
Availability of Supporting Data
More information about this project can be found at: http://
cbrain.mcgill.ca.
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Introduction
Data analysis software and canonical datasets are the driving force
behind many fields of empirical sciences. Despite being of para-
mount importance, those resources are most often not adequately
cited. Although some can consider this a “social” problem, its roots
are technical: Users of those resources often are simply not aware of
the underlying computational libraries and methods they have been
using in their research projects. This in-turn fosters inefficient prac-
tices that encourage the development of new projects, instead of
contributing to existing established ones. Some projects (e.g. FSL [1])
facilitate citation of the utilized methods, but such efforts are not
uniform, and the output is rarely in commonly used citation formats
(e.g. BibTeX). DueCredit is a simple framework to embed information
about publications or other references within the original code or
dataset descriptors. References are automatically reported to the user
whenever a given functionality or dataset is being used.
Approach
DueCredit is currently available for Python, but we envision extend-
ing support to other frameworks (e.g., Matlab, R). Until DueCredit
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gets adopted natively by the projects, it provides the functionality to
“inject” references for 3rd party modules.
For the developer, DueCredit implements a decorator @due.dcite
that allows to link a method or class to a set of references that can
be specified through a doi or BibTeX entry. For example (from
PyMVPA):
Results
The initial release of DueCredit (0.1.0) was implemented during the
OHBM 2015 hackathon and uploaded to pypi and is freely available.
DueCredit provides a concise API to associate a publication reference
with any given module or function. For example: To provide a reference
for an entire module the cite function can be used, while functions and
methods can be conveniently decorated using dcite. DueCredit comes
with a simple demo code, which demonstrates its utility. Running a
sample analysis produces a summary of references. At each run, the in-
formation is stored in a pickled file, and incremental runs update that
file. Thus, DueCredit summary can be used to show that information
again or export it as a BibTeX file ready for reuse.
Conclusions
DueCredit is in its early stages of development, but two days of team
development at the OHBM hackathon were sufficient to establish a
usable prototype implementation. Since then, the code-base was fur-
ther improved and multiple beta-releases followed, expanding the
coverage of citable resources (e.g., within scipy, sklearn modules via
injections and PyMVPA natively).
Availability of supporting data
More information about this project can be found at: https://github.-
com/duecredit/duecredit
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Introduction
In dogs, the perception of an important stimulus can be related to
physiological changes such as the heart rate (e.g., in socioemotional
situations with humans [1] or dogs [2]) and the movement of their
tail (for example, tail-wagging has a bias that depends on the nature
of the stimulus, a bias to the left is related to a withdrawal tendency
and a bias to the right is related to an approach tendency [3]).
Although heart rate and the tail movement are important gateways
to understanding dog cognition, just a few studies report these vari-
ables. Perhaps this is related to the difficulty of obtaining records of
these variables in natural environments (e.g., parks), the elevated cost
of commercial data acquisition hardware (around 5,000 USD [4]) or
by nonexistence of a tail-movement registering device. For these
reasons, the goal of this Brainhack project is to design and build a
low cost device able to register the heart rate and changes in the tail
movement in dogs, both in laboratory and in free movement
conditions.
Approach
We decided to base our design in Arduino hardware for its accessibil-
ity and broad use. The materials are detailed in the Table 4.
We designed and 3d printed a PLA case to contain the circuit. The
case has a slot to add a strap to fix the device on the dogs back. The
program for the Arduino and the model for the case can be down-
loaded from the GitHub (scripts directory) repository of the project.
In order to assess if the device could reliably get readings from a
dog, we tested it in three phases: baseline, stimulation/no-stimula-
tion and free movement. All phases lasted two minutes and were re-
peated twice on two dogs. In both, baseline and stimulation/no-
stimulation, the dog stayed in sphinx position without movement re-
strictions but under the command “stay”. The stimulation/no-stimula-
tion phase consisted in three interleaved repetitions of two types of
conditions, stimulation and no-stimulation, each repetition lasted
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Table 4 (abstract A13). Materials and cost

Materials Aproximate cost (in USD)

Arduino UNO rev3 20.00
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20 s. In the stimulation condition the dog owner showed the
dog a treat and mentioned the dog’s name. In the free move-
ment condition, the dog walked down a street without any spe-
cific command.
EKG-EMG-shield from Olimex with electrodes 48.00

Vibration sensor from phidgets 11.00

9v rechargeable battery 7.00

SD Card Reader module ARM MCU 1.20

Total 87.20

The table shows most of the materials used and their approximated cost with
a local provider. Other materials were used but their cost is negligible

Fig. 11 (abstract A13). The results shown were obtained from two
dogs under two consecutive conditions. Stimulation and No-
stimulation. In panels a, b and c, the colors represent the conditions.
The panel a represents the standard deviation from the mean of the
heart beat amplitude. The panel b represents the change on the
beats per minute on both conditions minus a baseline registered
directly from each dog. The vertical lines represent the standard
error. The panel c represents the standard deviation from the mean
of the tail movement. The panel d shows one of the registered dogs
wearing the device
Results
In the stimulation/no-stimulation phase a Wilcoxon Signed Rank Test
revealed statistically significant differences (p < 0.05) between the
beats per minute, beat amplitude and the tail movement amplitude
(Fig. 11).
By matching the data collected with observations of the move-
ment of the tail, we notice that the data reflects the position of
the tail but its resolution depended on the position of the
electrode. The data acquired from the free movement condition
was affected by the movement and did not seem reliable for
testing.
Conclusions
We were able to build and test a non-invasive low cost device with
the capacity to register the heart rate and the tail movement of
dogs. We consider that the addition of a movement sensor could
provide additional data to reduce the change on the signal due to
movement.
This device can be integrated in future research on dog cognition. It
can also be used in shelters and homes to easily measure the re-
sponses that dogs present to different sets of stimuli; for example,
when a dog is left alone in its house and shows stress (i.e. increased
heart rate, preferential tail movement to the left) the dog’s care giver
could make changes in the environment to increase the well-being
of the dog.
The low cost and the easy access to the materials needed to build
the device make it a feasible option to study dog cognition. The re-
sults showed that the device could be used to distinguish between
two different stimulation conditions.
Availability of supporting data
More information about this project can be found at: https://github.-
com/nekrum/DogVest.
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Introduction
The laterality index (LI) is one way to assess hemispheric dominance
in a variety of tasks, such as language, cognitive functions, and
changes in laterality in clinical populations, such as after stroke. In
stroke neuroimaging, however, an optimal method of calculating the
LI remains controversial, largely due to lesion variability in post-
stroke brains.
Two main methods of calculating LI have evolved in neuroimaging
literature [1] The first, more traditional approach counts the number
of active voxels in a given region of interest (ROI) for each
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Table 5 (abstract A14). Laterality index using a voxel-count-based
method in FSL: a comparison across different stroke lesion profiles and
different thresholds

Subcortical Lesion Cortical Lesion

Side of Stroke Lesion Z-Score LH RH LI LH RH LI

Left 1 272 284 −0.022 382 22 0.891

1.5 167 217 −0.130 101 0 1

2.3 37 123 −0.538 1 0 1

Mean −0.230 0.964

Right 1 335 68 0.662 509 49 0.824

1.5 193 29 0.739 318 3 0.981

2.3 76 1 0.974 216 0 1

Mean 0.792 0.935

Fig. 12 (abstract A14). A Comparison Across Different Stroke Lesion
Profiles at Maximum Lesion. MRI scans of individuals who sustained
a subcortical left-hemisphere stroke, b cortical left-hemisphere
stroke, c subcortical right-hemisphere stroke, d cortical
right-hemisphere stroke

GigaScience 2016, 5(Suppl 1):46 Page 15 of 26
hemisphere. This method has been criticized for its inability to ac-
count for differences in signal intensity. Hence, a second approach
calculates laterality based on the percent signal change within a
given region; however, this method also has problems, such as diffi-
culty handling negative values.
A laterality toolbox that addresses some of these issues has been im-
plemented in the statistical neuroimaging analysis package SPM,
which provides users with options of using either method, along
with more advanced statistical tests for robust LI calculations [2] No
such toolbox is yet available for FSL. Therefore, we developed a
series of scripts to calculate LI in FSL using both voxel count and per-
cent signal change methods. However, in the interest of space, here
we present only results from the more robust method of the two
(voxel count method).
Approach
We used fMRI data from two groups of stroke participants who either
had right or left hemisphere lesions. Participants observed videos of
right or left hand actions, and resulting statistical maps were calcu-
lated for each individual. The LI was then calculated per participant,
based on the number of active voxels within a given anatomically-
defined ROI (the inferior frontal gyrus, pars opercularis). Using the
cluster tool in FSL, we set a threshold on the second-level whole-
brain map. We set a range of z-values (z = 1.0, z = 1.5, z = 2.3) to test
the effects of different thresholds. We then utilized fslstats to deter-
mine the total number of active voxels in both left and right hemi-
sphere ROIs. Finally, we calculated LI based on the equation:

LI ¼ L‐Rð Þ= L þ Rð Þ
where L represents the number of active voxels in the left-
hemisphere ROI and R is the number of active voxels in the right-
hemisphere ROI. This yields a value for LI such that −1 < LI < +1,
where a positive value indicates left-hemisphere dominance and a
negative value indicates right-hemisphere dominance.
Results/Discussion
We examined the variability in LI at different z-value thresholds to look
at laterality differences in individuals with cortical versus subcortical
stroke as well as the affected hemisphere (R vs. L). The LI values of four
representative individuals (see Fig. 12) with the following types of
stroke were as follows (see Table 5): subcortical left-hemisphere stroke
(mean LI = −0.23; right lateralized), subcortical right-hemisphere stroke
(mean LI = 0.79; left lateralized), cortical left-hemisphere stroke (mean
LI = 0.96, left lateralized), and cortical right-hemisphere stroke (mean LI =
0.94, left lateralized). These LI results corresponded with our whole brain
observations (not included here).
Importantly, we notice that the voxel count method is highly dependent
on the threshold value: as the threshold increases in stringency, the value
of the LI increases. With individuals after stroke, higher thresholds may
yield 0 active voxels, leading to a potentially skewed LI (LI = 1).
Conclusions
We suggest that stroke neuroimaging might benefit from calculating
an average LI across different thresholds (including more lenient
thresholds such as z = 1.0), in order to provide a more robust out-
come that takes into account threshold dependency. This is espe-
cially true for individuals with cortical strokes, where the ROI may
overlap with the lesion and yield 0 active voxels. This issue of thresh-
olding, specifically for stroke research, is an interesting question that
remains to be addressed further. Our scripts for these calculations
may be found online at the NPNL resource page [http://chan.us-
c.edu/npnl/resources].
Availability of supporting data
More information about this project can be found at: http://github.-
com/npnl/LI_FSL
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Fig. 13 (abstract A15). Visualization of the cortical thickness
projected onto the left hemisphere's inflated surface for both the
FreeSurfer(left) and Nipype workflows as well as the difference the
two thicknesses(right). The thickness measurements showed no
difference between the workflows
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Introduction
FreeSurfer[1] is a popular software suite for automatic analysis of MRI
data, including subcortical and cortical segmentation, as well as cor-
tical surface reconstruction and correspondence. FreeSurfer's most
prominent tool, the recon-all workflow, consists of approximately 170
sequentially run commands in a tcsh shell script that uses approxi-
mately 50 unique FreeSurfer tools. The purpose of this project is to
reconstruct the recon-all workflow from FreeSurfer's tcsh shell script
into an equivalent workflow using Nipype which [2].
The goal of this work is to enhance the efficiency and usability of the
workflow by allowing it to take advantage of the increasing availabil-
ity of high performance computing resources. Nipype also enhances
the modularity of the workflow which allows for algorithms from
other packages (e.g., ANTS[3] FSL[4] BRAINSTools[5] to be explored,
added into the workflow, or take the place of existing processing
steps. Therefore, the Nipype environment permits increased collabor-
ation on the recon-all workflow and allows for the limitations of the
workflow to be easily addressed.
Approach
Nipype interfaces were created for the tools used in the recon-all
workflow. These interfaces allow developers to recreate in a Nipype
workflow the exact same commands used in the FreeSurfer's tcsh
script. The Nipype version of the recon-all workflow was then created
by using the Nipype interfaces to connect the FreeSurfer commands
in the order necessary. To verify that the new Nipype workflow is
equivalent to FreeSurfer's recon-all workflow, both workflows were
run on the same set of MRI images on multiple platforms (CentOS
6.4 and Mac OS X) and in a high-performance computing environ-
ment. Output surface files were converted to VTK file format, and the
output image files were converted to NIFTI file format. The images
and surfaces output from FreeSurfer's recon-all workflow were com-
pared to the outputs from Nipype recon-all workflow.
Results
All output images and surfaces from FreeSurfer's recon-all were iden-
tical to those of the Nipype workflow that was run on the same oper-
ating system (see Fig. 13). During testing on a 16 Core CentOS 6.4
machine with 64GB of memory, FreeSurfer's recon-all workflow com-
pleted processing in over 8.9 hours. With multiprocessing, the Nipype
workflow achieved identical results and completed processing in
under 6 hours when tested on the same machine.
Conclusions
The Nipype workflow created in this project was shown to be equiva-
lent to the pre-existing FreeSurfer recon-all workflow. Furthermore,
by utilizing Nipype's ability to run commands in parallel, the new
workflow reduces the running time of recon-all by over 30% when
compared to FreeSurfer's recon-all script which runs commands in a
sequential order. The Nipype environment also allows for increased
collaboration in further developing the workflow. Future work will in-
volve incorporating more options to the Nipype workflow so that it
can function as a complete replacement for the tcsh shell script. The
collaborations at the 2015 OHBM BrainHack meeting were instru-
mental in accomplishing this task. Collaborations with the FreeSurfer,
Nipype, and Human Connectome teams allowed members of this
project to quickly identify problems and avoid unnecessary failures.
Availability of supporting data
The resulting workflow from this project can be found at: https://
github.com/nipy/nipype. An example of how to run the workflow on
the tutorial data can be found at: https://github.com/nipy/nipype/
blob/master/examples/smri_fsreconall.py.
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Introduction
A vast number of clinical disorders may involve changes in
brain structure that are correlated with cognitive function and
behavior (e.g., depression, schizophrenia, stroke, etc.). Reliably
understanding the relationship between specific brain structures
and relevant behaviors in worldwide clinical populations could
dramatically improve healthcare decisions around the world. For
instance, if a reliable relationship between brain structure after
stroke and functional motor ability was established, brain im-
aging could be used to predict prognosis/recovery potential for
individual patients. However, high heterogeneity in clinical pop-
ulations in both individual neuroanatomy and behavioral out-
comes make it difficult to develop accurate models of these
potentially subtle relationships.
Large neuroimaging studies (n > 10,000) would provide unprece-
dented power to successfully relate clinical neuroanatomy changes
with behavioral measures. While these sample sizes might be difficult
for any one individual to collect, the ENIGMA Center for Worldwide-
Medicine, Imaging, and Genomics has successfully pioneered meta-
and mega-analytic methods to accomplish this task. ENIGMA [http://
enigma.ini.usc.edu] brings together a global alliance of over 500
international researchers from over 35 countries to pool together
neuroimaging data on different disease states in hopes of discover-
ing critical brain-behavior relationships [1,2] Individual investigators
with relevant data run ENIGMA analysis protocols on their own data
and send back an output folder containing the analysis results to be
combined with data from other sites for a meta-analysis. In this way,
large sample sizes can be acquired without the hassle of large-scale
data transfers or actual neuroimaging data sharing.
ENIGMA protocols were initially developed to harmonize pro-
cessing methods of imaging researchers around the world and
they require a moderate level of familiarity with several pro-
gramming languages and environments. However, ENIGMA’s re-
cent success has attracted greater interest in collaborative
neuroimaging and protocols must be adjusted to allow for all
levels of experience, as, the success of this approach depends
on individual collaborators running these ENIGMA protocols on
their data. Here, we worked on simplifying these protocols so
even a novice programmer could use them. In this way, we
hope to expand the feasibility of collecting critical clinical data
from collaborators who may have less experience with neuroim-
aging techniques.
Approach
The current ENIGMA protocols [http://enigma.ini.usc.edu/protocols/] for
structural neuroimaging analyses consist of a number of different word
documents with embedded links to different scripts and snippets of
code that use R [3], Bash scripting [4], Matlab [5], FSL [6], and Freesurfer
[7]. Each step must be run sequentially, costing the user time during
the implementation to wait for each step to finish before beginning
the next. In addition, the number of different scripts, programming lan-
guages and software environments can be challenging for a novice
user and introduces numerous instances where the individual may
make errors in implementing the code. To address this, we created 3
easy-to-use wrapper scripts that automate the implementation of the
ENIGMA protocols for both subcortical and cortical structural MRI ana-
lyses (see Table 6). These wrapper scripts reduce over 40 steps down to
3 quick steps for the user. We also created a user-friendly readme file
that includes screenshots of the code implementation.
To examine the ease of use and time to implement the new scripts,
we tested each of them on 7 users who had different levels of
familiarity with programming and neuroimaging (novice users (no
programming experience), moderate users (basic-to-intermediate
programming experience), and expert users (extensive program-
ming)). To explore additional factors relating to implementation, two
of the expert users had to use the scripts in a different environment
(e.g., organize the data, install the software, etc.).
Results/Discussion
Overall, moderate and expert level users found the scripts extremely
easy to implement and required less than 25 minutes to get all three
scripts running (excluding the run time of each script; see Table 6 for
individual results). The two novice users required greater support to
understand basic elements (e.g., what is a terminal), but with support,
were able to complete all the steps in less than 1 hour. Finally, the ex-
pert users who implemented the scripts on their own environment
found the most time-consuming steps to be installing and trouble-
shooting Freesurfer (e.g., install errors; troubleshooting a conflict be-
tween the preset Freesurfer subjects directory and the output directory
required by the scripts) and reorganizing data into a format for the
scripts (e.g., putting the data into an organized format with main_-
folder/subject_folder/subject.nii.gz). Once these steps were complete,
each expert user reported about 10 minutes for script implementation.
The wrapper scripts made the implementation of the ENIGMA proto-
cols quick and feasible even for novice users. However, there were
still three main barriers to participation that required significant time,
computational resources, and some expertise: 1) data organization
(depending on previous data structure), 2) running freesurfer
(~12 hrs/subj), and 3) installation of the required software (e.g., Free-
surfer, FSL, R). Future projects may look at ways to streamline these
areas for a more seamless user experience in order to facilitate
greater sharing of clinical neuroimaging data through ENIGMA.
Availability of supporting data
More information about this project can be found at: https://github.-
com/npnl/ENIGMA-Wrapper-Scripts. A test dataset is available on re-
quest; if interested, please email npnl@usc.edu.
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Table 6 (abstract A16). User feedback

User Level EOU Time Notes

Novice 1 8 00:35:25 Required walk through support

Novice 2 8 00:52:55 Required support for basic terminal commands only;
then was able to complete independently

Moderate
1

3 00:23:45 Required no support

Moderate
2

4 00:22:10 Required no support

Expert 1 3 00:11:34 Required no support

Expert 2 -
DE

3 02:00:00 Getting scripts to run took several minutes but
reorganizing data and troubleshooting with freesurfer
took significant time

Expert 3 –
DE

2 01:15:00 Required walk through support

EOU: Ease of Use score (1–10) 1 = easiest, 10 = hardest. Time: the time it took
for the user to setup and learn to use the scripts. DE: User’s expertise is with a
different computational environment than the one required by the scripts
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Introduction
The human cerebral cortex, whether tracing it through phylogeny or
ontogeny, emerges through expansion and progressive differentiation
into larger and more diverse areas. While current methodologies ad-
dress this analytically by characterizing local cortical expansion in the
form of surface area [1] several lines of research have proposed that
the cortex in fact expands along trajectories from primordial anchor
areas [2,3] and furthermore, that the distance along the cortical surface
is informative regarding cortical differentiation [4]. We sought to inves-
tigate the geometric relationships that arise in the cortex based on ex-
pansion from such origin points. Towards this aim, we developed a
Python package for measuring the geodesic distance along the cortical
surface that restricts shortest paths from passing through nodes of
non-cortical areas such as the non-cortical portions of the surface mesh
described as the “medial wall’.
Approach
The calculation of geodesic distance along a mesh surface is based
in the cumulative distance of the shortest path between two points.
The first challenge that arises is the sensitivity of the calculation to
the resolution of the mesh: the coarser mesh, the longer the shortest
path may be, as the distance becomes progressively less direct. This
problem has been previously addressed and subsequently imple-
mented in the Python package gdist [https://pypi.python.org/pypi/
gdist/], which calculates the exact geodesic distance along a mesh
by subdividing the shortest path until a straight line along the cortex
is approximated [5]
The second challenge, for which there was no prefabricated solution,
was ensuring that the shortest path only traverses territory within
the cortex proper, avoiding shortcuts through non-cortical areas in-
cluded in the surface mesh — most prominently, the non-cortical
portions along the medial wall. Were the shortest paths between
two nodes to traverse non-cortical regions, the distance between
nodes would be artificially decreased, which would have artifactual
impact on the interpretation of results. This concern would be
especially relevent to the ‘zones analysis’ described below, where the
boundaries between regions would be altered. It was therefore
necessary to remove mesh nodes prior to calculating the exact
geodesic, which requires reconstructing the mesh and assigning the
respective new node indices for any seed regions-of-interest.
Finally, to facilitate applications to neuroscience research questions,
we enabled the loading and visualization of data from commonly
used formats such as FreeSurfer and the Human Connectome Project
(HCP). A Nipype pipeline for group-level batch processing has also
been made available [6]. The pipeline is wrapped in a command-line
interface and allows for straightforward distance calculations of en-
tire FreeSurfer-preprocessed datasets. Group-level data are stored as
CSV files for each requested mesh resolution, source label and hemi-
sphere, facilitating further statistical analyses.
Results
The resultant package, SurfDist, achieves the aforementioned goals
of faciliating the calculation of exact geodesic distance on the cor-
tical surface. We present here the distance measures from the central
and calcarine sulci labels on the FreeSurfer native surfaces (Fig. 14b).
The distance measure provides a means to parcellate the cortex
using the surface geometry. Towards that aim, we also implement a
‘zones analysis’, which constructs a Voronoi diagram, establishing par-
titions based on the greater proximity to a set of label nodes
(Fig. 14c).
Surface rendering of the results draws from plotting functions as im-
plemented in Nilearn [7] and exclusively relies on the common li-
brary matplotlib to minimize dependencies. The visualization applies
sensible defaults but can flexibly be adapted to different views, col-
ormaps and thresholds as well as shadowing using a sulcal depth
map.
Conclusions
The SurfDist package is designed to enable investigation of intrinisic
geometric properties of the cerebral cortex based on geodesic dis-
tance measures. Towards the aim of enabling applications specific to
neuroimaging-based research question, we have designed the pack-
age to facilitate analysis and visualization of geodesic distance met-
rics using standard cortical surface meshes.
Availability of supporting data
More information about this project can be found at: http://github.
com/margulies/surfdist
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Fig. 14 (abstract A17). a Schematic illustrating the distance (b) and
zone (c) analyses. b FreeSurfer labels from the central and calcarine
sulci depicted on the individual inflated surface (left), and the exact
geodesic distance from the two labels presented on an individual
pial surface (right). c Zones delineated based on proximity to the
central (red) or calcarine (blue) sulci
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Introduction
Cloud computing resources, such as Amazon Web Services (AWS)
[http://aws.amazon.com], provide pay-as-you-go access to high-
performance computer resources and dependable data storage solu-
tions for performing large scale analyses of neuroimaging data [1].
These are particularly attractive for researchers at small universities
and in developing countries who lack the wherewithal to maintain
their own high performance computing systems. The objective of
this project is to upload data from the 1000 Functional Connectomes
Project (FCP) [2] and International Neuroimaging Datasharing Initia-
tives (INDI) [3] grass-roots data sharing initiatives into a Public S3
Bucket that has been generously provided by AWS. This will make
the data more quickly accessible for AWS-based analysis of these
data, but will also improve the speed and availability of access to this
data for analyses performed outside of the cloud. To begin with, we
focused on the following collections:

� The autism brain imaging data exchange (ABIDE) consists of
structural MRI and resting state functional MRI from 1113
individuals (164 F, 948 M, 6–64 years old, 539 with autism
spectrum disorders, 573 typical controls) aggregated from 20
different studies [4]

� The ADHD-200 contains structural MRI and resting state
functional MRI from 973 individuals (352 F, 594 M, 7–21 years
old, 362 with attention deficit hyperactivity disorder (ADHD),
585 typically developing controls) collected from 8 sites [5]

� The Consortium for Reliability and Reproducibility (CoRR) consists
of 3,357 structural MRI, 5,093 resting state fMRI, 1,302 diffusion
MRI, and 300 cerebral blood flow scans from 1629 subjects
(673 F, 956 M, 6–84 years old, all typical controls) acquired in a
variety of test-retest designs at 35 sites [6]

� The Enhanced Nathan Kline Institute - Rockland Sample (ENKI-RS)
consists of structural MRI, resting state functional MRI, diffusion
MRI, cerebral blood flow, and a variety of task functional MRI
scans and deep phenotyping on over 700 participants from
across the lifespan and a variety of phenotypes acquired at a
single site [7] The acquisition of this collection is ongoing.

� The Addiction Connectome Preprocessed Initiative (ACPI) [http://
fcon_1000.projects.nitrc.org/indi/ACPI/html/index.html] consists
of 216 structural MRI and 252 functional MRI from 192 subjects
(44 F, 148 M, 18–50 years old) from three datasets generated by
NIDA investigators.

Approach
Data for the ADHD-200, ABIDE, CoRR, and Rockland Sample data col-
lections are currently downloadable from NITRC [http://fcon_1000.-
projects.nitrc.org/] as a series of large (>2GB) tar files. The process of
uploading the data involved downloading and extracting the data
from these tar files, organizing the individual images to the standard-
ized INDI format [http://fcon_1000.projects.nitrc.org/indi/indi_data_-
contribution_guide.pdf] and then uploading the data to S3. We
developed a S3 upload script in python using the Boto AWS software
development kit [https://aws.amazon.com/sdk-for-python/] to facili-
tate this process. We also developed a download script in python
that provides basic query functionality for selecting the data to
download from a spreadsheet describing the data.
Results
The entirety of the CoRR, ABIDE, ACPI, and ADHD-200 data collections
and ENKIRS data for 427 individuals were uploaded during the OHBM
Hackathon event. The data are available as individual files to make it
easily indexable by database infrastructures such as COINS [8] LORIS
[9] and others. Additionally, this makes it easy for the users to down-
load just the data that they want. The data in the bucket can be
browsed and downloaded using a GUI based S3 file transfer software
such as Cyberduck [http://cyberduck.io] (see Fig. 14), or using the Boto
Python library [https://github.com/FCP-INDI/INDI-Tools]. One can con-
nect to the bucket using the configuration shown in Fig. 15. The data is
structured as follows: bucketname/data/Projects/ProjectName/Data-
Type. For example you can access raw data from the ENKI-RS, as shown
in Fig. 15, by specifying the following path in CyberDuck: https://
s3.amazon.com/fcp-indi/data/Projects/RocklandSample/RawData
Conclusions
Uploading data shared through the FCP and INDI initiatives improves
its accessibility for cloud-based and local computation. Future efforts
for this project will include uploading the remainder of the FCP and
INDI data and organizing the data in the new brain imaging data
structure (BIDS) format [10].
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Introduction
Task-based fMRI is a powerful approach to understand brain processes
for a certain task. However, fMRI images are usually preprocessed hours,
days or even months after the scan. During the functional image prepro-
cessing stage, defects in images are detected and, in some cases, cannot
be corrected. For example, technical problems with the scanner or lack of
collaboration from the subject to perform the given tasks. For these cases
it is necessary to realize a new scan. In order to mitigate lost scans due to
patient non-compliance, we need an approach to detect such non-
compliance during the scan.
Approach
In this Brainhack project, we aim to detect if a subject is following the
given task and provide an almost real-time feedback to the researchers
to make a decision during the exam if the subject is not collaborating.
This is necessary to be performed in order to avoid loss of data, in
which the images are typically processed and quality assessed at an-
other day. We will focus on task where there are no button responses
from the subject, hence relying solely in the BOLD signal if the subject
is collaborating. To do so, we use plan abandonment techniques [1] a
sub-area of Artificial Intelligence. For a given fMRI paradigm, a plan
should be created and compared with the subject’s brain activation
during the scan using recognition methods. To use plan abandonment
techniques, we need to discretize and formalize the fMRI and construct
a expected plan based on the hypothesized paradigm using this
formalization. To evaluate the compliance with a specific paradigm, we
aim to use real-time fMRI methods to retrieve BOLD signals of brain re-
gions that are supposed to be active in a particular time range. In order
to tolerate fluctuations of the BOLD signal, we aim to use the methods
that detect non-compliance using a threshold from the expected acti-
vation.By doing so, it is possible to detect if a subject is following the
paradigm given a specific stimulus type, such as visual or auditory
stimulus. The brain state of each stimulus type will be mapped based
on atlas from the literature. For example, to cover motor activations,
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Brodmann area 4 will be mapped with a state motor_actv. Thus, for a
paradigm that works with motor tasks, the plan must contain motor_-
actv for the given time that the task occurs.
Discussion
The formalization of brain states strongly depends on the
discretization of specific region states, which might vary from subject
to subject. In order to normalize the signals, a previous tuning phase
is required with simple paradigms, depending on which paradigm
will be executed. During the scan, an online normalization must be
made to a standard space, such as the MNI brain space. This real-
time processing is required to map expected active regions to the
previously selected brain areas from an atlas.
The usage of real-time fMRI methods aggregates to our approach since
the tuning and pursuance recognition can be made during the exam.
Such real-time fMRI methods can also monitor movements during the
scan in order to identify if there is too much subject movement. In the
case of fMRI paradigm abandonment, the paradigm can be adapted to
induce or interest the subject in a way that the subject proceeds with
its tasks, using methods such as demonstrated by [2]. Neurofeedback
can be used to sustain the subject’s interest by letting the paradigm be
more challenging, requiring more attention and collaboration from the
patient, such as the paradigm from [3].
Conclusions
This project is in its initial phase. Real-time fMRI methods are being
tested, using AFNI’s provided tools. In order to use plan abandonment
techniques, the next step is to formalize basic stimuli types based on
mapped regions. By using these formalizations, paradigms can be con-
verted to a problem of plan abandonment and it becomes possible to
evaluate the participation of a subject during the scan.
Availability of supporting data
More information about this project can be found at: https://github.
com/brainhack-poa/fmri-plan-recongnition.
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Introduction
Self-organization is a fundamental property of complex systems, de-
scribing the order spontaneously arising by the local interactions of
the system components not mediated by top-down inputs. Though,
self-organizing systems typically possess a large number of compo-
nents and exhibit complex dynamics, their evolution is deterministic
and governed by a small number of order parameters. This property
was used to model the self-organization of the ocular dominance
columns of the striate cortex in patterns of neighboring stripes [1]
which respond preferentially to inputs from the left or the right eye.
In this model the self-organization across ocular dominance and
orientation preference layers was coupled, were both layers were
modeled with the Swift-Hohenberg eq. [2] We reduce the model
complexity by including only the cortical dominance layer and inves-
tigate the parameter dependency of the self-organization with a
Matlab implementation.
Approach
The Swift-Hohenberg eq. [2] was used to model the self-organization
of the ocular dominance columns. There are two order parameters in
this equation, the first one determines the spatial wavelength (λ) of
the stripes and the second one the branchiness (ε) of the pattern. is
the Laplace operator.

∂tψ x; y; tð Þ ¼ ε− Δþ 4π2

λ2

� �2
" #

�ψ−ψ3 ð1Þ

The algorithm used to generate the results has been modified from
an open source script [http://nile.physics.ncsu.edu/hon292a-f08/]. The
Swift-Hohenberg equation was solved by applying periodic boundary
conditions after a Fourier transform to k space, which simplifies the
computation of the solution.
Results
Figures 16 (a), (b) and (c) shows the temporal evolution of the solu-
tion to the Swift-Hohenberg equation for random initial conditions
(a), constant ε and time increasing from (a) to (c). In (c), (d) and (e)
three solutions with different ε are shown. The branchiness increases
with ε from (c) to (e). The wavelength (λ) was set to the same value
in all figures and the pattern in (d) is similar to the ocular dominance
layers found in the visual cortex.
Conclusions
A simple model suffices to study basic properties of ocular domin-
ance self-organization. Possibly, a combination of models for self-
organization in neighboring cortical layers would allow to investigate
even higher organizational principles of the cortex [1] e.g.~the coord-
ination between ocular dominance layers, orientation layers, and
cytochrome oxidase.
Availability of supporting data
More information about this project can be found at: http://brain-
hack.org/self-organization-and-brain-function. Further data and files
supporting this project are hosted in the GigaScience repository:
https://github.com/Brainhack-Proceedings-2015/Pfan_HBM_SOBF.
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Introduction
Sharing of brain research can be aided by the Neuroimaging Data
Model (NIDM) [1–3]. NIDM provides a community-based framework for
developing data exchange standards that describe the primary obser-
vations, computational workflows, and derived results of neuroimaging
studies [4]. For example, a researcher sharing a statistical brain map
could include with the brain map a data structure, “NIDM Results”, that
contains complete information about the parameters used to generate
the result, significant coordinate points in the brain map paired with
test criteria, along with other meta-data exported from the software
that generated it. This additional information cannot be represented in
the brain map itself, and provides a complete description of the result
that can be compared to other results, or used to reproduce it.
While work is underway to integrate NIDM into the software used by
the human brain mapping community, only low-level tools are cur-
rently available to access and query NIDM documents that rely on a
graph-based representation called the Resource Description Frame-
work (RDF) [5]. Further, technologies like RDF and the corresponding
query language, SPARQL [6] pose a steep learning curve for users of
standard Web development workflows. With the recent migration of
tools for neuroimaging meta analysis [7, 8], sharing [9–17], and
visualization [18–20] into the Web browser, Web developers will be
incentivized by the ability to easily integrate brain data into Web
applications using familiar languages and formats. The goal of this
Brainhack project was to develop infrastructure to serve NIDM
documents and queries using an API with a syntax that allows for the
easy development of Web-based tools for the neuroimaging commu-
nity. These tools are publicly available on Github (RRID:SCR_002630) for
the API [https://github.com/incf-nidash/nidm-api] and queries [https://
github.com/incf-nidash/nidm-query], along with complete documenta-
tion [https://nidm-api.readthedocs.org].
Approach
The nidm-api [21] is a RESTful API and Web application that provides a
simplified view of NIDM documents using formats (e.g., JavaScript Ob-
ject Notation (JSON) [22] that are accessible to Web developers and re-
searchers without expertise in Linked Open Data (LOD) technologies.
This project includes two components. First, the nidm-api [https://
github.com/incf-nidash/nidm-api] is a Python-based executable that
works both as a command-line tool to run queries over NIDM docu-
ments, as well as to serve a RESTful API to allow a local or cloud-based
server to execute queries on documents accessible by URL. Second,
nidm-query [https://github.com/incf-nidash/nidm-query] is a repository
of SPARQL queries that the nidm-api application dynamically down-
loads, validates, and serves upon starting the application. This strategy
means that NIDM developers can collaboratively construct SPARQL
queries without requiring Web developers to gain expertise in LOD
technology. The nidm-api, along with serving the queries, also provides
a graphical Web interfaces to contribute new queries to the shared re-
pository. Because the nidm-api is a Python Flask [23] application, it can
be used both as an executable to serve the API [24] and contains a set
of functions that can be integrated into other Python-based
frameworks [25] or cloud platforms that provide Python accessibility
[26, 27]. A schematic of the tool is provided in (Fig. 17).
Results
Using the API
Installation produces an executable, nidm that downloads, validates,
and provides a summary of available queries in the nidm-query reposi-
tory. A query can be further investigated by selecting its unique identi-
fier: http://localhost:8088/api/7950f524-90e8-4d54-ad6d-7b22af2e895d
and can then be executed in a RESTful fashion by including a variable
to point to a local path or URL of a NIDM document: http://local-
host:8088/api/query/7950f524-90e8-4d54-ad6d-7b22af2e895d?ttl=/
home/nidm.ttl.
The API then runs the query over the document, and returns the re-
sult to the user in JSON. The same functionality can be achieved on
the command line [http://nidm-api.readthedocs.org/en/latest/getting-
started.html#integration-into-python], supporting direct integration
into server-based Python applications.
Generating new queries
Researchers familiar with LOD can run the application in the same
fashion, and go to a URL in their local browser:
http://localhost:8088/query/new which reveals an interface [http://nidm-
api.readthedocs.org/en/latest/development.html#web-query-generator]
to generate new queries. The web interface asks for a set of variables
[http://nidm-api.readthedocs.org/en/latest/development.html#fields] that
are necessary for the nidm-api to serve the query. The query can be pre-
viewed, and then downloaded as a JSON object that can be submitted
to the nidm-query repository and added to the application.
Applications using NIDM
As an example of the type of Web applications that can be built with
the NIDM API, the NIDM Results object model [28] was recently inte-
grated into the NeuroVault [http://www.neurovault.org] database,
meaning that neuroimaging researchers can export results pertaining
to statistical brain maps from common software [29] into NeuroVault.
A nidm-viewer [https://github.com/vsoch/nidmviewer] that runs
queries over the nidm-results can then parse the coordinates and
statistical parameters associated with significant locations of activa-
tions to be rendered in a table alongside a visualization of the brain
map itself (Fig. 18 and example [http://neurovault.org/collections/
877/fsl_course_av.nidm]). The raw data and parameters of the ana-
lysis are thus immediately available for sharing and publication, pro-
gramatically accessible, and viewed from any web browser.
Conclusions
By providing tools to integrate the NIDM standard into modern web
technology, NIDM can be more easily deployed into applications to
empower neuroimaging researchers to explore and synthesize re-
sults, workflows, and experiments. This application will be extended
to return more modern and desired outputs such as images and
interactive graphs [30] and additional functionality will be added as
the NIDM experiment, workflows, and results standards are further
developed. The software and queries are both publicly available
[https://github.com/incf-nidash] and open to contributions.
Availability of Supporting Data
More information about this project can be found at: http://nidm-api.
readthedocs.org. Further data and files supporting this project are
hosted in the INCF NIDASH repositories https://github.com/incf-nidash/
nidm-api and https://github.com/incf-nidash/nidm-query.

Competing interests
None.

Author’s contributions
VS and NN wrote the software and wrote the report.

Acknowledgements
Report from 2015 Brainhack Americas (MX). The authors would like to thank the
INCF Neuroimaging Data Sharing Task Force, organizers and attendees of
Brainhack MX, along with David Keator for helpful edits to the manuscript. VS is
supported by a William R. Hewlett Stanford Graduate Fellowship and a National
Science Foundation Fellowship. NN is supported by NIH NIAAA and OD
(NCANDA Data Analysis Component, NIH 1 U01 AA021697; BD2K Supplement,
NIH 1 U01 AA021697-04S1).

https://github.com/incf-nidash/nidm-api
https://github.com/incf-nidash/nidm-query
https://github.com/incf-nidash/nidm-query
https://nidm-api.readthedocs.org/
https://github.com/incf-nidash/nidm-api
https://github.com/incf-nidash/nidm-api
https://github.com/incf-nidash/nidm-query
http://nidm-api.readthedocs.org/en/latest/getting-started.html#integration-into-python
http://nidm-api.readthedocs.org/en/latest/getting-started.html#integration-into-python
http://nidm-api.readthedocs.org/en/latest/development.html#web-query-generator
http://nidm-api.readthedocs.org/en/latest/development.html#web-query-generator
http://nidm-api.readthedocs.org/en/latest/development.html#fields
http://www.neurovault.org/
https://github.com/vsoch/nidmviewer
http://neurovault.org/collections/877/fsl_course_av.nidm
http://neurovault.org/collections/877/fsl_course_av.nidm
https://github.com/incf-nidash
http://nidm-api.readthedocs.org/
http://nidm-api.readthedocs.org/
https://github.com/incf-nidash/nidm-api
https://github.com/incf-nidash/nidm-api
https://github.com/incf-nidash/nidm-query


Fig. 17 (abstract A21). The nidm-api (nidm) provides programmatic
access to queries in the nidm-query repository, including RESTful ac-
cess (left panel) and access from python applications (right panel)

Fig. 18 (abstract A21). The nidm-viewer in the NeuroVault database
queries NIDM Results objects to generate an interactive table and
statistical brain map
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Fig. 19 (abstract A22). SVM coefficients tool showing the most
relevant feature in a classification task

Fig. 20 (abstract A22). Deep learning
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Introduction
The amount of data acquired for an fMRI experiment dimension
wise is very large and a challenge for neuroscience studies, in
particular for data analysis and visualization. Diverse tools have
been developed to confront these challenges, but their analytical
results can differ. Addressing those differences is not facilitated
by existing tools. The goal of this Brainhack project was to build
a flexible utility to analyze fMRI experimental results. This utility
is called NeuroView. NeuroView allows researchers to extend the
visualizations to their context: every visual behavior or interac-
tions of this tool is customizable. We implemented NeuroView to
work in Web-browsers, using JavaScript and the libraries D3.js
and jQuery.
Results
We created three tools using NeuroView to best analyze our research
results: CC200 search, SVM coefficients and Connectivity matrix. Each
tool is used to aid the analysis of results in Machine Learning tasks.
Each of these tools is described below in detail.
CC200 search
In this tool, we allow the user to find atlas regions (e.g. Left Putamen
from Harvard-Oxford subcortical structural atlas) mapped to a spe-
cific parcellation. As as initial approach, the CC200 [1] parcellation
method was used, since our analysis uses data from functional MRI.
Since we parcellate our data into CC200’s ROIs in most of our studies,
the identification of atlas regions became necessary to compare with
results found in the literature. The search can be performed in two
manners: it is possible to search for an atlas region (e.g. Putamen)
and retrieve which parcels are included in this region, and it is pos-
sible to click an ROI in NeuroView to retrieve which atlas regions in-
clude the specific parcel.
SVM coefficients
For the second tool, we created a user interface to identify the ROIs
that contribute to the classification in a Support Vector Machine. The
classification method uses task-based fMRI features to identify good
and poor readers [2] Given a list of most relevant features, as shown
in Fig. 19, we can show the features’ parcel in NeuroView and iden-
tify to which atlas regions this parcel belongs to.
Connectivity matrix
In the third study case, NeuroView was customized to interact
with a connectivity chord plot (or connectogram) [3] This plot
contains each CC200 parcel and chords that represent the con-
nectivity between these parcels. Since we use the connectivity
matrix as features for our deep learning method, we need to
check which feature (i.e. the correlation between two parcels)
most contributes to the classification. After thresholding 17995
features, we retrieve ten features that are more relevant in our
analysis, as shown in Fig. 20. In the chord plot, a red chord indi-
cates that two regions are correlated, and a blue chord indicates
that two regions are anti-correlated. By clicking a chord, Neuro-
View highlights the regions that are connected by this chord.
Thus, highlighted regions are correlated (or anti-correlated) given
the chord color.
Conclusion
This is an initial version of a browser-based neuroimage viewer.
The main focus is to develop an embeddable viewer, instead of a
standalone desktop software. By doing so, research results can be
presented on interactive views, enriching their analysis and inter-
pretation. In our case study, NeuroView facilitates quick evalu-
ation of features for machine learning algorithms, and promotes
discussion about them, since the results will inform researchers
about their data.
In future work, we aim to directly load Nifti images at client-side and
support some AFNI features, such as voxel clustering.
Availability of supporting data
More information about this project can be found at: https://github.-
com/lsa-pucrs/neuroview
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Fig. 21 (abstract A23). Example segmentations on T1 images

Fig. 22 (abstract A23). Example segmentations on Difussion Power
Maps (DPM)
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Introduction
DMRI is used for creating visual representations of the structural con-
nectivity of the brain, also known as tractography. Research has
shown that using a tissue classifier can be of great benefit to create
more accurate representations of the underlying connections [1]
The aim of this project was to implement an image segmentation al-
gorithm in DIPY [2] for classifying the different tissue types of the
brain using structural T1 weighted images (T1-w) and diffusion MRI
images (dMRI), and to incorporate the resulting tissue probability
maps for Anatomically-Constrained Tractography (ACT) [3] We used
Diffusion Power Maps (DPMs), which are scalar maps that are calcu-
lated from dMRI data and have a tissue contrast similar to the T1-w.
By performing the tissue classification on dMRI derived scalar maps,
the T1-w to dMRI registration step can be avoided.
Approach
We used a Bayesian approach for the segmentation in a similar fash-
ion than the methods proposed in [4] and [5] by applying the Max-
imum-A-Posteriori (MAP) procedure. The prior probability was
modeled with Markov Random Fields (MRF). The MRF distribution
was modeled as a Gibbs distribution. We used the Expectation
Maximization (EM) algorithm to update the tissue labels at each site
and to update the parameters of the log-likelihood in all iterations.
Results
The first row of Fig. 21 shows the tissue classification on T1-w, the
initial segmentation based on maximum likelihood and the final seg-
mentation after 10 iterations and beta=0.1. Beta determines the
weight of the neighborhood in the MRF model. These two parame-
ters were tuned and validated by permuting 42 different combina-
tions and calculating the Jaccard index between the segmentation of
the proposed method against manually segmented brains from the
IBSR dataset [http://www.nitrc.org/projects/ibsr]. The second row of
Fig. 21 shows the probability maps of the three main tissue classes
of the brain. The top row of Fig. 22 shows on the left the Diffusion
Power Map (DPM), followed by its tissue classification and the
streamlines from the corpus callosum reconstructed with ACT. The
bottom row of Fig. 22 shows the tissue probability maps of the seg-
mentation performed on a DPM.
Conclusions
We developed a segmentation algorithm based on a Bayesian frame-
work by using the MAP-MRF approach and EM. The algorithm was
tested on T1-w as well as on DPMs [6] The tissue specific probability
maps from both the T1-w and the DPMs were then used for ACT. We
were able to successfully run ACT with the tissue probability maps
derived from the DPMs.
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