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Single-molecule optical genome mapping
of a human HapMap and a colorectal
cancer cell line
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Abstract

Background: Next-generation sequencing (NGS) technologies have changed our understanding of the variability of
the human genome. However, the identification of genome structural variations based on NGS approaches with
read lengths of 35–300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis
of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural
variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical
mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116.

Findings: High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose
plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and
296,000 DNA molecules (≥150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the
Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment
method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage
obtained with previously available software.

Conclusions: Optical mapping allows the resolution of large-scale structural variations of the genome, and the
scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical
mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878,
and the colorectal cancer cell line HCT116.

Keywords: Optical mapping, Genomic mapping, Cancer genome, Genome structure, Single-molecule restriction
mapping
Data description
The analysis of human genome next-generation sequen-
cing (NGS) data largely focuses on the detection of
single nucleotide variants (SNVs), and insertions and de-
letions of a few base pairs (indels). Larger genome struc-
tural variations (SVs) that can result in copy number
variations (CNVs) affect up to 13 % of the human gen-
ome [1]. However, the detection of SVs, in particular of
copy number neutral events such as inversions, 'cut and
paste' insertions, or balanced translocations through
NGS analysis is less straightforward [2]. A particular
problem lies in the short read length of 35–300 bases of
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the most commonly used NGS approaches, which does
not, in many cases, allow unambiguous mapping of the
respective reads to the human reference genome. This is
relevant since transposable elements with their sequence
similarities account for a large proportion of SVs in the
human genome [3], and rearrangement points tend to
occur in repetitive sequences [4]. In contrast, single-
molecule optical mapping technologies label large DNA
fragments of up to 2 Mb that allow the identification of
large SVs and de novo assembly of genomes [5–9]. The
length of single DNA molecules provides a higher sensi-
tivity for the identification of large SVs with rearrange-
ment points within repetitive sequences compared to
standard NGS approaches.
Optical mapping is a light microscope-based technique

for constructing ordered physical maps of restriction
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enzyme recognition sites across a genome. It has been
applied to characterize the structure of the human genome
[8–10] but only a small fraction of the raw optical maps is
usually used for mapping. We aimed to improve the effi-
cacy of data analysis to allow greater scalability of this
approach. Here we present optical mapping data for two
human genomes: the HapMap cell line GM12878, and the
colorectal cancer cell line HCT116.
High molecular weight (HMW) DNA was extracted

from the human cell lines GM12878 and HCT116 as
follows. Cells were embedded in agarose plugs at a
concentration of approximately 107 cells/ml by mixing
a cell suspension in phosphate buffered saline (PBS) with
a 1 % low melting point agarose–PBS solution, dispensing
the mixture into plug molds (Bio-Rad Laboratories, Inc.)
and allowing the plugs to solidify completely. Cell lysis
within the agarose plugs was performed by immersing the
plugs in 5 ml of lysis buffer (0.5 M EDTA, pH 9.5; 1 %
lauroyl sarcosine, sodium salt; proteinase K, 2 mg/ml)
at 50 °C for 2 days, with gentle agitation and a change
of lysis buffer in between. The plugs were then washed
three times with 45 ml of 1X TE buffer (pH 8.0) per
wash with gentle rocking. The DNA that remained
immobilized within the agarose plugs was released by
melting the agarose at 70 °C for 7 min, followed by
incubation with β-agarase in 1X TE buffer (pH 8.0) at 42 °C
overnight. Argus 10X Loading Buffer (OpGen Inc) was
added to the sample (to approximately 1X concentration),
and incubated overnight at room temperature. The HMW
Table 1 In silico analysis of restriction enzyme cutting statistics for th

Enzyme Usable DNA fragments (%) Average fragment s

5–20 kb 6–15 kb 6–12 kb

AflII 13.3 5.48 5.43 4.47

BamHI 99.22 92.95 92.9 7.92

KpnI 99.95 99.88 99.51 9.98

NcoI 0.08 0.03 0.03 3.81

NheI 99.86 98.97 90.75 10.23

SpeI 99.28 96.71 94.55 7.27

BglII 2.33 0.81 0.8 3.71

EcoRI 2.21 0.79 0.79 3.67

MluI 0.34 0.01 0.01 135.32

NdeI 5.9 1.78 1.78 3.19

PvuII 0.03 0.02 0.02 2.66

XbaI 2.75 1.15 1.15 3.58

XhoI 17.02 6.37 2.21 23.78

To select the restriction enzyme that cuts the human genome to maximize the frac
silico with 13 commonly used restriction enzymes based on their canonical cutting
6–12 kb, since smaller DNA fragments do not allow accurate size estimates, and lon
based on its high fraction of usable DNA fragments (highlighted in bold)
DNA was further diluted in Argus Dilution Buffer (OpGen
Inc) and incubated overnight at 37 °C before determining
the DNA length and concentration on Argus QCards
(OpGen Inc).
Argus MapCards were assembled following the

manufacturer’s protocol, using Argus consumables and
reagents (OpGen Inc). HMW DNA prepared as de-
scribed above was allowed to flow through a high
density channel-forming device (CFD), which was
placed on an Argus MapCard surface attached to an
Argus MapCard II. This resulted in single DNA mole-
cules being stretched and immobilized on the surface.
The CFD was removed, a cap was placed over the
DNA, and reagents (antifade, buffer, enzyme, stain)
were loaded into the MapCard reservoirs. The assem-
bled MapCard was placed in the Argus MapCard Pro-
cessor where digestion with KpnI enzyme (Table 1)
and staining of DNA molecules occurred in an auto-
mated process. The MapCard was removed from the
Argus Mapcard Processor and sealed, then placed in
the Argus Optical Mapper and set up for automatic
data collection as described previously [5]. Argus Mapper
was used to image DNA molecules and corresponding
restriction fragments by fluorescence microscopy (Fig. 1).
The Argus System merged images into channel images
and labeled DNA molecules of 150 kb to 2 Mb. Restric-
tion enzyme cut sites were detected as gaps in linear
DNA molecules, and the size of each restriction frag-
ment between adjacent cut sites was determined. The
e human reference genome (hg19)

ize (kb) Maximum fragment size (kb) #Fragments >100 kb

143.96 4

153.92 21

171.76 65

164.18 2

204.75 88

311.48 101

109.69 1

86.14 0

2276.59 8295

105.86 1

173.76 6

146.27 2

430.88 3269

tion of fragments resulting in informative maps, the human genome was cut in
sites. Usable restriction fragment sizes were defined as 5–20 kb, 6–15 kb, and
ger fragments can result in maps with too few fragments. KpnI was selected



Fig. 1 Representative optical map of GM12878. DNA molecules were stretched and immobilized onto a glass MapCard surface with the aid of a
channel-forming device, cut by KpnI, stained, and visualized by fluorescence imaging. Interrupted linear stretches indicate DNA digested by KpnI.
Whirly, non-linear, short, and disjointed DNA molecules are filtered out by the image processing software
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Mapper filtered out non-linear distorted fragments and
small molecules, identified gaps between fragments,
and measured the size of retained high quality frag-
ments. Data from DNA molecules with at least 10
fragments and quality scores of 0.2 were collected from
4 and 6 MapCards for GM12878 and HCT116 cell
lines, respectively.
We obtained 309,879 and 296,217 maps (fragmented

DNA molecules) for GM12878 and HCT116, respectively;
these had ≥10 fragments and were ≥150 kb in length
(Tables 2 and 3), and were used as inputs for alignment
by OPTIMA [11–13]. These criteria are more inclusive
compared to the default parameters for alignment by
the state-of-the-art algorithm Gentig v.2 (OpGen Inc)
[5, 14]. MapCard output for maps with these criteria
ranged between 3,744 and 93,896 maps. Average frag-
ment sizes were 16.4 kb for GM12878, and 15.7 kb for
HCT116. OPTIMA allowed alignment of 20.9 and
18.1 % of maps with these criteria, significantly more
than by using Gentig [12]. Average digestion rates were
estimated to be 0.66 and 0.691 (cuts), and extra-cutting
rates were estimated to be 0.751 and 0.774 cuts per
100 kb for GM12878 and HCT116, respectively.
Although enzyme selection, data filtering protocols

and alignment methods greatly influence data metrics,
we compared our data with an optical mapping study of
two human cancer genomes (Ray and colleagues; [8]).
The average DNA molecule size of our GM12878 and
HCT116 maps with ≥12 fragments and ≥250 kb in
length were 359 and 372 kb, respectively. The Ray et al.
data had average DNA molecule sizes of 434 and
421 kb, respectively. The aligned coverage of the human
genome for GM12878 and HCT116 was 5.5× and 4.6×,
respectively, while the Ray et al. data gave 37× and 25×
coverage. Estimated digestion rates were 65 and 68 %
with KpnI for GM12878 and HCT116, respectively,
while digestion rates were 83 and 82 % with SwaI for the
Ray et al. data. For GM12878 and HCT116 we estimated
0.747 and 0.749 extra cuts per 100 kb, respectively, while
the data of Ray et al. showed 0.168 and 0.233 extra cuts
per 100 kb.
While GM12878 has been analyzed by paired-end

sequencing [15], resolving the genome structure is re-
stricted by the limitations of short-read sequencing. The
data presented here is a resource to define the genome
structure of this HapMap cell line, as well as that of
HCT116, a commonly used colorectal cancer cell line.
Cancer genomes are known to be rearranged to various
extents. The interpretation of epigenetic alterations and
mutations in non-coding but regulatory regions of the
genome will only be accurate if they are seen in the correct
genomic context, i.e. in the sample-specific genome struc-
ture. This requires methodologies like single-molecule
optical mapping to resolve the genome structure beyond
what is possible with short-read NGS data.
Availability and requirements of software used
OPTIMA can be downloaded from GigaScience DB
[13] at http://dx.doi.org/10.5524/100165 and at http://
www.davideverzotto.it/research/OPTIMA. The software
requirements are Oracle Java SE Development Kit 7+,
Apache Commons Math 3.2 JAR library, and CERN Colt
1.2.0 JAR library.
Availability of supporting data and materials
The datasets supporting the results of this Data Note are
available in the GigaScience repository, GigaDB [16].
Also, the supporting material for the OPTIMA tool used
for alignment of data in this paper can be found in
GigaDB [13].
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Table 2 Summary of MapCard statistics of GM12878

MapCard
ID

Fa Input mapsb

(theoretical genome
coverage)

Average
Argus quality
score

Average DNA
molecule size
(kb)

Average # of
fragments

Average fragment
size (kb)

OPTIMA
alignment rate

Yield
(genome coverage)c

Average
digestion ratec

Average false/
extra cut ratec

Ratio small missing
fragments (≤2 kb)c

21157LB (r) 73365 (7.2×) 0.50 295 18 16.5 0.253 2.0× 0.659 0.736 0.139

(s) 38483 (4.7×) 0.53 368 22 17.0 0.357 1.7× 0.650 0.733 0.133

21159LB (r) 75761 (7.6×) 0.47 300 17 17.4 0.190 1.6× 0.628 0.723 0.129

(s) 41236 (5.1×) 0.50 370 21 17.8 0.268 1.3× 0.618 0.718 0.124

21431LB (r) 93896 (8.6×) 0.52 274 17 15.8 0.200 1.9× 0.676 0.773 0.187

(s) 43667 (5.1×) 0.54 348 21 16.3 0.303 1.5× 0.665 0.768 0.184

21443LB (r) 66857 (6×) 0.51 271 17 15.8 0.192 1.3× 0.674 0.771 0.175

(s) 29991 (3.5×) 0.53 346 21 16.3 0.292 1.0× 0.661 0.772 0.168

Total (r) 309879 (29.4×) 0.50 285 17 16.4 0.209 6.8× 0.660 0.751 0.158

(s) 153377 (18.3×) 0.52 359 21 16.9 0.310 5.5× 0.649 0.747 0.152
ar: inclusion of DNA molecules with ≥10 fragments and ≥150 kb in length; s: inclusion of DNA molecules with ≥12 fragments and ≥250 kb in length
bfragmented DNA molecules
cof OPTIMA aligned data
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Table 3 Summary of MapCard statistics of HCT116

MapCard ID Fa Input mapsb

(theoretical genome
coverage)

Average
Argus quality
score

Average DNA
molecule size
(kb)

Average #
of fragments

Average
fragment size
(kb)

OPTIMA
alignment rate

Yield
(genome coverage)c

Average
digestion ratec

Average false/
extra cut ratec

Ratio small missing
fragments (≤2 kb)c

17182LA (r) 10911 (0.9×) 0.33 257 16 15.7 0.040 0.04× 0.661 1.288 0.170

(s) 3744 (0.4×) 0.33 351 20 17.7 0.040 0.02× 0.628 1.226 0.190

17184LA-2 (r) 55719 (5.7×) 0.43 305 19 16.3 0.180 1.1× 0.678 0.760 0.197

(s) 28658 (3.7×) 0.45 390 23 17.2 0.250 0.9× 0.669 0.737 0.199

17185LA (r) 56879 (5.4×) 0.55 285 19 14.7 0.240 1.5× 0.705 0.756 0.219

(s) 28003 (3.4×) 0.59 365 24 15.1 0.352 1.2× 0.696 0.739 0.217

17186LA-3 (r) 52984 (5.8×) 0.54 328 20 16.0 0.327 2.0× 0.696 0.677 0.167

(s) 31588 (4.3×) 0.56 404 25 16.4 0.423 1.7× 0.688 0.671 0.163

17187LA (r) 88730 (7.8×) 0.45 264 18 14.8 0.115 1.0× 0.692 0.940 0.195

(s) 36018 (4.2×) 0.46 349 22 15.8 0.171 0.7× 0.678 0.919 0.188

14593LB (r) 30994 (2.7×) 0.39 261 14 18.9 0.059 0.2× 0.626 0.847 0.161

(s) 10944 (1.2×) 0.39 337 17 20.2 0.086 0.1× 0.597 0.869 0.151

Total (r) 296217 (28.3×) 0.47 287 18 15.7 0.181 5.7× 0.691 0.774 0.191

(s) 138955 (17.2×) 0.50 372 23 16.5 0.271 4.6× 0.682 0.749 0.188
ar: inclusion of DNA molecules with ≥10 fragments and ≥150 kb in length; s: inclusion of DNA molecules with ≥12 fragments and ≥250 kb in length
bfragmented DNA molecules
cof OPTIMA aligned data
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Abbreviations
CFD: channel-forming device; CNV: copy number variation; HMW: high molecular
weight; indel: insertion or deletion of a few base pairs; NGS: next-generation
sequencing; PBS: phosphate buffered saline; SNV: single-nucleotide variant;
SV: structural variation.

Competing interests
This work was partly supported under a research collaboration agreement
with Sciencewerke Pte. Ltd., the Singapore distributor for OpGen Inc, and by
the Agency for Science, Technology and Research (A*STAR). No employees
of Sciencewerke or OpGen played a role in the work described in this
manuscript.

Authors’ contributions
AMH and NN conceived and planned the overall project; DV and NN defined
sub-projects of this work. ASMT carried out all experiments to generate the
optical mapping data used in this manuscript, with the help of FY and under
the guidance of AMH. DV designed and implemented the algorithms and
conducted the analysis under the guidance of NN. AMH wrote the manuscript
with contributions from ASMT, DV and NN. All authors read and approved the
final manuscript.

Acknowledgements
We would like to thank Dr Juntao Li for useful discussions on the statistical
analysis, and Chee Seng Chan and Lavanya Veeravalli for post-processing the
optical mapping data.

Author details
1Cancer Therapeutics and Stratified Oncology, Genome Institute of
Singapore, 60 Biopolis Street, Singapore 138672, Singapore. 2Computational
and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street,
Singapore 138672, Singapore.

Received: 14 July 2015 Accepted: 17 December 2015

References
1. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins

and functional impact of copy number variation in the human genome.
Nature. 2010;464(7289):704–12. doi:10.1038/nature08516.

2. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and
genotyping. Nat Rev Genet. 2011;12(5):363–76. doi:10.1038/nrg2958.

3. Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, et al. A human
genome structural variation sequencing resource reveals insights into
mutational mechanisms. Cell. 2010;143(5):837–47. doi:10.1016/j.cell.2010.10.027.

4. Yao F, Kausalya JP, Sia YY, Teo ASM, Lee WH, Ong AGM, et al. Recurrent
fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial
integrity. Cell Rep. 2015. doi:10.1016/j.celrep.2015.06.020.

5. Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, et al. Sequencing and
automated whole-genome optical mapping of the genome of a domestic
goat (Capra hircus). Nat Biotechnol. 2013;31(2):135–41. doi:10.1038/nbt.2478.

6. Ganapathy G, Howard JT, Ward JM, Li J, Li B, Li Y, et al. High-coverage
sequencing and annotated assemblies of the budgerigar genome.
GigaScience. 2014;3:11. doi:10.1186/2047-217X-3-11.

7. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping
on nanochannel arrays for structural variation analysis and sequence assembly.
Nat Biotechnol. 2012;30(8):771–6. doi:10.1038/nbt.2303.

8. Ray M, Goldstein S, Zhou S, Potamousis K, Sarkar D, Newton MA, et al. Discovery
of structural alterations in solid tumor oligodendroglioma by single molecule
analysis. BMC Genomics. 2013;14:505. doi:10.1186/1471-2164-14-505.

9. Teague B, Waterman MS, Goldstein S, Potamousis K, Zhou S, Reslewic S, et al.
High-resolution human genome structure by single-molecule analysis. Proc
Natl Acad Sci U S A. 2010;107(24):10848–53. doi:10.1073/pnas.0914638107.

10. Antonacci F, Kidd JM, Marques-Bonet T, Teague B, Ventura M, Girirajan S, et al.
A large and complex structural polymorphism at 16p12.1 underlies
microdeletion disease risk. Nat Genet. 2010;42(9):745–50. doi:10.1038/ng.643.

11. Verzotto D, Teo ASM, Hillmer AM, Nagarajan N, Index-based map-to-
sequence alignment in large eukaryotic genomes. Fifth RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2015). Warsaw,
Poland: Cold Spring Harbor Labs Journals; 2015. doi:10.1101/017194.
12. Verzotto D, Teo ASM, Hillmer AM, Nagarajan N. OPTIMA: Sensitive and accurate
whole-genome alignment of error-prone genomic maps by combinatorial
indexing and technology-agnostic statistical analysis. GigaScience (accepted).

13. Verzotto D, Teo ASM, Hillmer AM, Nagarajan N. Supporting software for OPTIMA,
a tool for sensitive and accurate whole-genome alignment of error-prone
genomic maps by combinatorial indexing and technology-agnostic statistical
analysis. GigaScience Database. 2015. http://dx.doi.org/10.5524/100165.

14. Anantharaman TS, Mishra B, Schwartz DC. Genomics via optical mapping. II:
Ordered restriction maps. J Comput Biol. 1997;4(2):91–118.

15. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al.
An integrated map of genetic variation from 1,092 human genomes. Nature.
2012;491(7422):56–65. doi:10.1038/nature11632.

16. Teo ASM, Verzotto D, Yao F, Nagarajan N, Hillmer AM. Supporting single-
molecule optical genome mapping data from a human HapMap and a
colorectal cancer cell line. GigaScience Database. http://dx.doi.org/10.5524/
100182.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1038/nature08516
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1016/j.cell.2010.10.027
http://dx.doi.org/10.1016/j.celrep.2015.06.020
http://dx.doi.org/10.1038/nbt.2478
http://dx.doi.org/10.1186/2047-217X-3-11
http://dx.doi.org/10.1038/nbt.2303
http://dx.doi.org/10.1186/1471-2164-14-505
http://dx.doi.org/10.1073/pnas.0914638107
http://dx.doi.org/10.1038/ng.643
http://dx.doi.org/10.1101/017194
http://dx.doi.org/10.5524/100165
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.5524/100182
http://dx.doi.org/10.5524/100182

	Abstract
	Background
	Findings
	Conclusions

	Data description
	Availability and requirements of software used
	Availability of supporting data and materials
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



