
TECHNICAL NOTE Open Access

NCBI BLAST+ integrated into Galaxy
Peter J. A. Cock1*, John M. Chilton2, Björn Grüning3, James E. Johnson2 and Nicola Soranzo4

Abstract

Background: The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small
tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale
pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating
BLAST into Galaxy was a natural step for sequence comparison workflows.

Findings: The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes
were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common
BLAST tasks easy and advanced tasks possible.

Conclusions: This project is an informal international collaborative effort, and is deployed and used on Galaxy
servers worldwide. Several examples of applications are described here.

Keywords: Galaxy, BLAST, Pipeline, Accessibility, Workflow, Reproducibility, Annotation, Sequence analysis

Findings
Background
The Basic Local Alignment Search Tool (BLAST) [1] has
arguably become the best known and most widely used
bioinformatics tool in molecular biology. Indeed, BLAST
is now so ubiquitous that this term, like PCR (polymer-
ase chain reaction), has become both a noun and a verb
in the patois of molecular biology, with the acronym
rarely spelt out, and is unfortunately frequently used
without citation.
In our opinion, a key factor in the widespread adop-

tion of BLAST has been the easy-to-use NCBI-hosted
BLAST web server, which provides (sufficiently) quick
search results against regularly updated global sequence
databases. The NCBI BLAST web interface is designed
for performing one query at a time, which means that
larger searches have to be automated for batch process-
ing within a script or by running BLAST as a command
line program. Automation also became increasingly im-
portant for the analysis of BLAST output as these data-
sets have grown larger. These needs led to the inclusion
in community-developed libraries such as BioPerl [2],
Biopython [3], BioJava [4] and BioRuby [5] of code for
calling BLAST and parsing its output. Although scripted

BLAST workflows greatly facilitated sequence analysis,
large-scale BLAST analysis still required a broad bio-
informatics skill set, including programming, dealing
with complex file types and working at the command
line.
With the advent of ‘next generation’ high-throughput

sequencing technology, the falling cost of sequence data
generation has resulted in a data abundance and all too
often analysis bottlenecks. This life science ‘informatics
crisis’ was one of the motivations behind the Galaxy
Project, which provides a platform for running a broad
collection of bioinformatics tools via a consistent web
interface [6, 7].
From the Galaxy end-user’s perspective, no local soft-

ware is required other than a recent web browser, yet
the user can run multiple bioinformatics tools (which
can be Linux-specific) from their desktop and easily
chain together the output of one tool as the input of an-
other. Moreover, Galaxy’s workflow feature enables users
to create and share repeatable analysis pipelines. To en-
courage reproducibility these pipelines can be published
as part of the methods in a scientific paper or in a re-
pository such as myExperiment [8].
Galaxy is an open-source project and an international

development community has grown up that contributes
improvements to the core software and, more import-
antly, to a growing pool of new tools and datatype defi-
nitions that can be added to individual Galaxy servers.

* Correspondence: peter.cock@hutton.ac.uk
1Information and Computational Sciences, James Hutton Institute,
Invergowrie, Dundee, DD2 5DA, Scotland, UK
Full list of author information is available at the end of the article

© 2015 Cock et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

Cock et al. GigaScience (2015) 4:39
DOI 10.1186/s13742-015-0080-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-015-0080-7&domain=pdf
mailto:peter.cock@hutton.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

These extensions are typically shared via the Galaxy
Tool Shed [9], which is a public repository of tools and
workflows, from where they can then be installed on in-
dividual Galaxy servers. Multiple tools were published in
the past 2 years [10–13].
The expansion of a Galaxy developer community out-

side the project core team has been facilitated by much
of Galaxy’s development being coordinated online and in
public, using mailing lists, source code repositories
(https://github.com/galaxyproject/ hosted by GitHub,
Inc.) and project management tools to track issues and
feature requests (Trello, hosted by Trello, Inc.). More-
over, the project has been supported by an annual Gal-
axy Community Conference since 2011 and by full-time
staff on the Galaxy Project dedicated to outreach work,
which have helped nurture an engaged Galaxy-user
community.
Although a free-to-use public server is hosted by the

Galaxy Project (https://usegalaxy.org/), many groups and
institutes run their own Galaxy servers. Administering a
local Galaxy Server enables customization with additional
tools of local interest, control of potentially sensitive data
and exploitation of local computing infrastructure, or even
rented computers from a cloud-computing provider such
as Amazon Web Services (AWS) through the use of Gal-
axy CloudMan [14]. Furthermore, public Galaxy servers
are now also being provided by groups wishing to make
their own tools immediately available to run by the wider
community, thus avoiding the need to write a bespoke
web interface [11, 13, 15].

This article describes our NCBI BLAST+ [16] wrap-
pers for Galaxy and associated tools and datatype defini-
tions. Currently, these tools have not been made
available at the public server hosted by the Galaxy Pro-
ject owing to concerns over the resulting computational
load (J Taylor, personal communication, 2013). However,
they are available from the Galaxy Tool Shed for auto-
mated installation into a local Galaxy instance, or from
our source code repository (hosted by GitHub, Inc., see
Availability and requirements section), and are released
under the open-source Massachusetts Institute of Tech-
nology (MIT) licence.

Applications
The NCBI BLAST+ command line Galaxy wrappers and
BLAST-related Galaxy tools are listed in Tables 1 and 2,
respectively. Table 3 summarizes the datatypes used or
defined in Galaxy. We now describe some example cases
and workflows in which these tools are combined. Fur-
ther examples were described in Cock et al. [10].

Assessing a de novo assembly
Although more specialized tools exist for the annotation
of a de novo assembly (e.g., Augustus [17], Glimmer3
[18] and Prokka [19], which we previously wrapped for
use in Galaxy [10, 13]), BLAST is often used for a first-
pass assessment. The following example is based on a
procedure that a local sequencing service, Edinburgh
Genomics, had adopted as part of their quality control
(later extended as described in [20]).

Table 1 NCBI BLAST+ Galaxy tools

Galaxy tool name Description Reference(s)

NCBI BLAST+ blastp Protein vs protein [1, 16]

NCBI BLAST+ blastn Nucleotide vs nucleotide [1, 16]

NCBI BLAST+ blastx Translated nucleotide vs protein [1, 16]

NCBI BLAST+ tblastn Protein vs translated nucleotide [1, 16]

NCBI BLAST+ tblastx Translated nucleotide vs translated nucleotide [1, 16]

NCBI BLAST+ makeblastdb Make BLAST nucleotide or protein database [1, 16]

NCBI BLAST+ makeprofiledb Make BLAST protein domain database [1, 16]

NCBI BLAST+ blastdbcmd entry(s) Extract sequence(s) from BLAST database [1, 16]

NCBI BLAST+ blastdbcmd info Show BLAST database information [1, 16]

NCBI BLAST+ dustmasker Nucleotide masking using the DUST algorithm [1, 16]

NCBI BLAST+ segmasker Protein masking using the SEG algorithm [1, 16]

NCBI BLAST+ windowmasker Window-based sequence masker [1, 16]

NCBI BLAST+ convert2blastmask Lowercase masking [1, 16]

NCBI BLAST+ rpsblast Protein vs protein domain [16, 39]

NCBI BLAST+ rpstblastn Translated nucleotide vs protein domain [16, 39]

Each row lists a separate Galaxy tool, all available from https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus/ on the Galaxy Tool Shed [9]. A separate
Galaxy tool is listed for each different underlying NCBI BLAST+ command line tool, except for the blastdbcmd command line tool, whose two main functions are
represented as two separate Galaxy tools. We intend to add further wrappers later, including for the command line tools psiblast and deltablast

Cock et al. GigaScience (2015) 4:39

2

https://github.com/galaxyproject/
https://usegalaxy.org/
https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus/

� Upload or import Illumina reads in FASTQ format.
� Run a fast assembler such as the CLC Assembly Cell

(CLC bio, Aarhus, Denmark) which we have
wrapped for use within Galaxy to generate an initial
set of contigs [21].

� Compare these initial contigs to the NCBI non-
redundant protein sequence database (NCBI NR)
using BLASTX, requesting at most one hit and tabu-
lar output including the taxonomy fields (and op-
tionally the hit description).

As the CLC Assembly Cell software is proprietary, our
exemplar workflow, available from the Galaxy Tool Shed
[22] and myExperiment [23], starts from a previously
generated or imported transcriptome assembly. This
workflow analyses a sample of 1000 sequences only and
uses Galaxy data manipulation tools to produce a sorted
tally table of species hits suitable for visualization within
Galaxy as a pie chart.
This simple taxon assignment can detect obvious con-

tamination or sample mix-up. However, this kind of sim-
ple ‘Top BLAST hit’ analysis should be treated with
caution owing to the potential for spurious matches, or
matches to misannotated sequences, such as contami-
nants, in published whole-genome shotgun assemblies
(see, for example, Yong [24] and references therein).

Finding genes of interest in a de novo assembly
As sequencing costs have fallen, for many organisms it is
now practical to sequence the entire genome when inter-
ested primarily in a single gene family. In this situation,
BLAST might be used within Galaxy as follows:

� Upload or import the (meta-) genome or
transcriptome assembly in FASTA format.

� Upload protein (or nucleotide) sequence of the
gene(s) of interest.

� Run the makeblastdb wrapper to create a BLAST
nucleotide database from the assembly.

� Run the blastx (or blastn) wrapper using the gene(s)
of interest as the query against the new database.

� Filter the matching contigs from the assembly
FASTA using the “Filter sequences by ID” tool [10, 25]
(or similar).

If required, rather than extracting complete contigs,
Galaxy has tools for working with genomic intervals that
could be used to select the matched regions only, as in
the next example.

Identifying candidate gene clusters
Identification and analysis of gene clusters is an import-
ant task in synthetic biology [26, 27]. Unfortunately,
identifying candidate gene clusters is complex and can
take hours for a single genome. However, with prior
knowledge about the expected genes in a cluster, the
genome can be screened in a way that limits the search
space dramatically.
For this application a workflow was constructed to

query two translated protein sequences against a BLAST
nucleotide database for the target genome [27] (Fig. 1).
This workflow is available with sample data via the Gal-
axy Tool Shed [28] and myExperiment [29].
The TBLASTN results are processed with standard

Galaxy text manipulation tools to extract the target

Table 2 Additional Galaxy tools using NCBI BLAST+

Galaxy tool name and URL Description Reference(s)

BLAST XML to tabular (https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus) Convert BLAST XML output into tabular
output

[10]

BLAST Reciprocal Best Hits (RBH) (https://toolshed.g2.bx.psu.edu/view/peterjc/blast_rbh) Takes two FASTA inputs, returns table This paper

Each row lists a separate Galaxy tool, all available from the Galaxy Tool Shed [9]

Table 3 Galaxy datatypes used or defined

Galaxy datatype Type Description

tabular Built-in Tab-separated plain text table, used as default BLAST+ output

text Built-in Plain text, used for human-readable BLAST+ output

html Built-in Webpage, used for human-readable BLAST+ output with hyperlinks

blastxml Add-on BLAST XML output

blastdbn Add-on BLAST database of nucleotide sequences, e.g., for BLASTN

blastdbp Add-on BLAST database of protein sequences, e.g., for BLASTP

blastdbd Add-on BLAST database of protein domain PSSMs, e.g., for RPS-BLAST

maskinfo-asn1 Add-on BLAST masking information files as text ASN.1

maskinfo-asn1-binary Add-on BLAST masking information files as binary ASN.1

Each row lists a separate Galaxy datatype, either available from the Galaxy Tool Shed [9] or already built into Galaxy

Cock et al. GigaScience (2015) 4:39

3

https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus
https://toolshed.g2.bx.psu.edu/view/peterjc/blast_rbh

sequence identifier and the hit start and stop coordi-
nates. The three-column interval format obtained is
Browser Extensible Data (BED)-like and the sequence
identifier corresponds to the chromosome or contig
name. Before intersecting the hit regions, one of them is
extended by 10,000 bp upstream and by the same length
downstream, by adding and subtracting 10,000 from the
start and end coordinates, respectively. The intersect
tool works on genomic coordinates, identifying overlap-
ping regions. These regions encode similar proteins to
the query sequence and other proteins in close proxim-
ity (<10,000 bp). The optional and last step in this ex-
ample groups and counts all sequence identifiers,
returning a list of all identified pairs located nearby and
their count.
This approach screens two proteins against all nucleo-

tide sequences from the NCBI nucleotide sequence data-
base (NCBI NT) within hours on our cluster, which
leads to the identification of all organisms with an inter-
esting gene structure for further investigation. As usual
in Galaxy workflows, every parameter, including the
proximity distance, can be changed and additional steps
can be easily added. For example, additional filtering to
refine the initial BLAST hits, or inclusion of a third
query sequence, can be added.

Identifying novel proteins
Proteogenomics combines genomic information with
mass-spectrometry-derived experimental data for prote-
omic analysis. To search for evidence of novel proteins,
the databases for proteomics search applications are
generated from six-frame translations of genomics or
transcript sequences or cDNA transcripts. With such
large databases, proteomics search applications generate

a large number of peptide spectral matches (PSMs). The
University of Minnesota developed workflows in Galaxy-
P (https://usegalaxyp.org/) to automate proteogenomic
analysis [30]. These workflows use the NCBI BLAST+
wrappers to compare the PSM peptides to known pro-
teins to filter the PSM list for those that are more likely
to be novel. An additional protein-protein BLAST
(BLASTP) wrapper was deployed in Galaxy-P to use the
remote search option of BLASTP to perform taxon-
specific searches on NCBI servers.

Implementation
Despite its maturity, the Galaxy platform has continued
to evolve rapidly, especially in the area of tool definition
and distribution. The Galaxy Tool Shed [9], published in
2014, enables anyone hosting a Galaxy instance to install
tools and defined dependencies with a few clicks right
from the Galaxy web application itself. The NCBI
BLAST+ tools described here were among the first tools
migrated to the Galaxy Tool Shed and have served as
drivers of Tool Shed features and representative exam-
ples of how easy it can be to deploy very powerful tools
using Galaxy.
The Galaxy BLAST+ wrappers are developed as an

open-source project using the distributed version control
system Git. We use the hosting service provided by
GitHub, Inc., which has become the hub of a growing
software development ecosystem. One particular ex-
ample of this is the continuous integration service
travis-ci.org offered by Travis CI GmbH. Although com-
plex to set up, every time our source code is updated on
GitHub, Travis CI automatically creates a Linux virtual
machine and installs BLAST+, the latest Galaxy code
and our wrappers - whose functional tests are then run

Fig. 1 Galaxy workflow for finding gene clusters. Screenshot from the Galaxy Workflow Editor, showing a published example workflow [27]
discussed in the Analyses section. Given two protein sequences, regions of a genome of interest are identified that contain tblastn matches to
both sequences, which pinpoints candidate gene clusters for further study

Cock et al. GigaScience (2015) 4:39

4

https://usegalaxyp.org/

[31]. This integration provides us prompt feedback,
through which many errors can be caught and dealt with
before releasing a new version via the Galaxy Tool Shed.
Furthermore, the BLAST+ wrapper tests have been used
by the Galaxy development team when working on the
Galaxy test framework.
One of the core concepts in Galaxy is that each data-

set has a specified datatype or file format, such as
FASTA format sequences or various FASTQ encodings
[32]. Each Galaxy tool normally accepts only specific
datatypes as input and will mark its output files with the
appropriate datatype. We defined a set of datatypes for
BLAST ASN.1 files, BLAST XML and the different
BLAST database types (see Table 3). Simple datatypes
can be defined by subclassing already existing datatypes.
In general, additional Python code is required, such as
defining a sniff function for auto-detection of the data-
type when loading files into Galaxy.
Galaxy also supports simple job splitting, which works

at the datatype level, with input datatypes (such as
FASTA) needing to provide a split method and output
datatypes (such as tabular or BLAST XML) needing to
provide a merge method. If this job splitting is enabled,
BLAST searches are automatically parallelized by split-
ting the FASTA query file into chunks and then merging
the output BLAST results. This process is done trans-
parently to the user and enables genome-scale BLAST
jobs to be spread across a cluster rather than being proc-
essed serially, providing a dramatic speedup.
The Galaxy-P project (Minnesota Supercomputing In-

stitute, University of Minnesota) contributed extensions
to Galaxy known as tool macros that make it consider-
ably easier to develop and maintain large suites of Gal-
axy tools by allowing authors to define high-level
abstractions describing any aspect of Galaxy’s XML-
based tool description language. These abstractions can
be combined and shared across various tools in a suite.
In wrapping the NCBI+ BLAST tool suite we have made
heavy use of macros to avoid the duplication of common
parameters, command line arguments and even help
text. In addition to removing hundreds of lines of XML,
this approach helps with consistency and maintenance,
as many changes need only be made once to the macro
definition.
Although the Galaxy Tool Shed has greatly simplified

installation of additional tools to an existing Galaxy ser-
ver, doing this installation ‘by hand’ remains time-
consuming and reproducibility suffers. However, this
process can be scripted, which is useful for automated
testing (as in our Travis CI setup outlined above) but
vital for large-scale deployment. In a similar vein to the
Galaxy CloudMan project [14] for automated creation of
complete virtual machine images running Galaxy, we
used the virtual containers technology from Docker, Inc.

for testing and deployment of a Galaxy server complete
with additions such as the BLAST+ tools. The Galaxy
BLAST Docker Image (see Availability and Require-
ments section) offers a complete Galaxy instance with
file transfer protocol (FTP) server, job scheduler and
BLAST wrappers [33]. Once Docker Image is installed,
the command ‘docker run -p 8080:80 bgruening/galaxy-
blast’ will download the image and start a BLAST-
enabled Galaxy instance on port 8080. Note that the
Docker Image does not currently automate installation
of any BLAST databases.
One area that remains a burden for the Galaxy admin-

istrator is the provision of local copies of BLAST data-
bases (external to Galaxy), such as in-house unpublished
datasets, or the main NCBI BLAST databases [34]. The
locations of these databases (which can be used outside
of Galaxy) are listed in simple tabular configuration files
(blastdb*.loc), which store a unique identifier key (re-
corded in Galaxy), a description (shown to the Galaxy
user) and the file path to the database (which can be up-
dated if required, for example owing to changes in local
storage architecture). In future work we hope to use the
Galaxy Data Manager Framework [35] to facilitate the
provision of BLAST databases.

Discussion
Over the past few decades the BLAST suite has grown,
with improvements such as gapped searches [36] and
additional functionality such as Position-Specific Iterated
BLAST (PSI-BLAST) [36, 37] and protein-domain
searches with Reverse Position-Specific BLAST (RPS-
BLAST) [38]. These Position-Specific Score Matrix
(PSSM)-based tools underpin the NCBI Conserved Do-
main Database (CDD) and the associated web-based
Conserved Domain Search service (CD-Search) [38, 39].
More recently, the NCBI BLAST team undertook an
ambitious rewrite of the BLAST tool suite, converting
the existing ‘legacy’ code base, which was written in the
C programming language, to the C++ language. The
new version was dubbed BLAST+ [16].
The expansion of the Galaxy wrappers for BLAST+

has followed a similar course. The initial wrappers fo-
cused on the five core tools (BLASTP, BLASTN,
BLASTX, TBLASTN and TBLASTX) and did not allow
the creation of custom BLAST databases. Gradually, the
scope and contributor base of the project has expanded
(Tables 1 and 3), particularly since our publication of
genome and protein annotation tools [10], and was also
supported by the move to a dedicated source code re-
pository on GitHub. This shift to a distributed inter-
national team effort followed discussions, both online
and in person at the Galaxy Community Conference
2013, and reflects the broad usage of the BLAST+ tools
within the Galaxy community.

Cock et al. GigaScience (2015) 4:39

5

Future work will include additional wrappers for the
remaining or new BLAST+ command line tools, expos-
ing additional command line options via the Galaxy
interface, and additional output file formats. Develop-
ments within Galaxy will also allow new functionality.
For example, we hope to build on the Galaxy Visual
Analysis Framework [40] to offer graphical representa-
tion of BLAST results within Galaxy, such as that of-
fered by the NCBI web service. Similarly, managing local
BLAST databases could be facilitated using the Data
Manager Framework [35].
By their nature, the Galaxy *.loc files and associated

external datasets (such as NCBI BLAST databases) im-
pose an administrative overhead and limitations on re-
producibility. One problem is that versioning of external
datasets requires a copy of each revision be maintained
with its own entry in Galaxy’s corresponding *.loc file. In
the case of the NCBI BLAST databases, this provenance
tracking is hampered by the absence of official version-
ing. Here a date-stamping approach is possible, for ex-
ample by keeping quarterly snapshots if local storage
allows. However, the more practical and probably more
common approach is to have a single live copy of the
NCBI BLAST databases, kept up to date automatically
with the NCBI-provided Perl scripts or similar. Such
setups are often already in place on central computer
clusters used for bioinformatics. A second issue with
using external datasets in Galaxy is that they undermine
sharing of workflows between Galaxy servers, as any ref-
erenced external datasets must also be synchronized. At
a practical level this synchronization requires consistent
naming schemes. For instance, for current versions of
the NCBI BLAST databases we recommend that the
Galaxy administrator always use the case-sensitive stem
of the file name as the key (e.g., use nr in blastdb_p.loc
to refer to a current version of the NCBI non-redundant
protein sequence database).
Running BLAST+ locally within Galaxy has been par-

ticularly useful for multi-query searches and searching
against unpublished data, such as draft genomes, as both
the local administrator and individual users can create
databases. However, the biggest user benefits for data
processing come when complete workflows can be run
within Galaxy, as in the examples shown.

Availability and requirements
Project name: Galaxy wrappers for NCBI BLAST+ and
related BLAST tools
Project home page: https://github.com/peterjc/

galaxy_blast
Operating system(s): Linux (recommended), Mac
Programming language: Python
Other requirements: Galaxy (and dependencies therein),

NCBI BLAST+

License: The MIT License
Any restrictions to use by non-academics: None
The Galaxy wrappers are also available from the Galaxy

Tool Shed (https://toolshed.g2.bx.psu.edu/view/devteam/
ncbi_blast_plus) for installation to an existing Galaxy
server and as part of Docker Image (https://registry.hub.
docker.com/u/bgruening/galaxy-blast/), which provides a
Galaxy server with the BLAST+ tools preinstalled.

Availability of supporting data
The datasets supporting the results of this article are avail-
able in the Galaxy BLAST repository, https://github.com/
peterjc/galaxy_blast (i.e., sample files used for automated
functional testing). A snapshot is also hosted in the Giga-
Science GigaDB repository [41].

Abbreviations
BLAST: Basic Local Alignment Search Tool; BLASTN: Nucleotide BLAST;
BLASTP: Protein BLAST; BLASTX: BLAST for searching protein databases using
a translated nucleotide query; FASTA: Text format for biological sequences;
FASTQ: Text format for biological sequences with quality scores;
NCBI: National Center for Biotechnology Information; PSM: Peptide spectral
match; TBLASTN: BLAST for searching translated nucleotide databases using
a protein query; TBLASTX: BLAST for searching translated nucleotide
databases using a translated nucleotide query; XML: Extensible Markup
Language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have made technical contributions to the tools described, and
have read, contributed to and approved the final manuscript. PJAC initiated
this work and continues to coordinate development. The other authors are
listed alphabetically by surname.

Acknowledgements
We thank the NCBI BLAST team for their long-running work, the Galaxy team
for their assistance and advice, the Galaxy community for their feedback and
suggestions, and the past, present and future contributors to the Galaxy tools
described here. Specifically, we thank Dannon Baker, Daniel Blankenberg,
Edward Kirton, Kanwei Li and Luobin Yang. The three reviewers are thanked for
their constructive feedback: Tom Madden, Gianmauro Cuccuru and, in
particular, Stian Soiland-Reyes for his attention to detail.
PJAC was funded by the Scottish Government’s Rural and Environment
Science and Analytical Services (RESAS) Division. BAG was funded by the
DFG CRC 992 Medical Epigenetics. JMC and JEJ were supported in part by
NSF grant 1147079.

Author details
1Information and Computational Sciences, James Hutton Institute,
Invergowrie, Dundee, DD2 5DA, Scotland, UK. 2Minnesota Supercomputing
Institute, University of Minnesota, 599 Walter Library, 117 Pleasant St. SE,
55455 Minneapolis, MN, USA. 3Department of Computer Science,
Albert-Ludwigs-University of Freiburg, Georges-Köhler-Allee 106, Freiburg
79110, Germany. 4CRS4, Loc. Piscina Manna, 09010 Pula, CA, Italy.

Received: 31 December 2014 Accepted: 18 August 2015

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215(3):403–10.
2. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, et al. The

Bioperl toolkit: Perl modules for the life sciences. Genome Res.
2002;12(10):1611–8.

Cock et al. GigaScience (2015) 4:39

6

https://github.com/peterjc/galaxy_blast
https://github.com/peterjc/galaxy_blast
https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus
https://toolshed.g2.bx.psu.edu/view/devteam/ncbi_blast_plus
https://registry.hub.docker.com/u/bgruening/galaxy-blast/
https://registry.hub.docker.com/u/bgruening/galaxy-blast/
https://github.com/peterjc/galaxy_blast
https://github.com/peterjc/galaxy_blast

3. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.
Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3.

4. Holland RCG, Down TA, Pocock M, Prlić A, Huen D, James K, et al. BioJava:
an open-source framework for bioinformatics. Bioinformatics.
2008;24(18):2096–7.

5. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T. BioRuby:
bioinformatics software for the Ruby programming language.
Bioinformatics. 2010;26(20):2617–9.

6. Goecks J, Nekrutenko A, Taylor J. The Galaxy Team. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 2010;11(8):R86.

7. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, et
al. Galaxy: A Web-Based Genome Analysis Tool for Experimentalists. Curr
Protoc Mol Biol. 2010;19:{19.10.1–19.10.21}. doi:10.1002/0471142727.
mb1910s89.

8. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D,
et al. myExperiment: a repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res. 2010;38 suppl 2:W677–82.

9. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, et al.
Dissemination of scientific software with Galaxy ToolShed. Genome Biol.
2014;15(2):403.

10. Cock PJA, Grüning BA, Paszkiewicz K, Pritchard L. Galaxy tools and
workflows for sequence analysis with applications in molecular plant
pathology. Peer J. 2013;1:e167.

11. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible
platform for exploring deep-sequencing data. Nucleic Acids Res.
2014;42(W1):W187–91.

12. Aranguren ME, Breis JTF, Antezana E, Mungall C, Gonzalez AR, Wilkinson M.
OPPL-Galaxy, a Galaxy tool for enhancing ontology exploitation as part of
bioinformatics workflows. J Biomed Semantics. 2013;4(1):2.

13. Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, et al.
Orione, a web-based framework for NGS analysis in microbiology.
Bioinformatics. 2014;30(13):1928–9.

14. Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J. Galaxy
CloudMan: delivering cloud compute clusters. BMC Bioinformatics.
2010;11 Suppl 12:S4.

15. Grau J, Boch J, Posch S. TALENoffer: genome-wide TALEN off-target
prediction. Bioinformatics. 2013;29(22):2931–2.

16. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421–9.

17. Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction
method employing protein multiple sequence alignments. Bioinformatics.
2011;27(6):757–63.

18. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes
and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–9.

19. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;30(14):2068–9.

20. Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: exploring
raw genome data for contaminants, symbionts and parasites using taxon-
annotated GC-coverage plots. Front Genet. 2013;4:237.

21. Galaxy Tool Shed Repository “clc_assembly_cell”: https://
toolshed.g2.bx.psu.edu/view/peterjc/clc_assembly_cell/

22. Galaxy Tool Shed Repository “blast_top_hit_species”: https://
toolshed.g2.bx.psu.edu/view/peterjc/blast_top_hit_species/

23. myExperiment Species of top BLAST hits: http://www.myexperiment.org/
workflows/4637.html

24. Yong E. There’s No Plague on the NYC Subway. No Platypuses Either.
National Geographic Magazine, Phenomena: Not Exactly Rocket Science;
2015: http://phenomena.nationalgeographic.com/2015/02/10/theres-no-
plague-on-the-nyc-subway-no-platypuses-either/

25. Galaxy Tool Shed Repository “Filter sequences by ID”: https://
toolshed.g2.bx.psu.edu/view/peterjc/seq_filter_by_id/

26. Fischbach M, Voigt CA. Prokaryotic gene clusters: A rich toolbox for
synthetic biology. Biotechnol J. 2010;5(12):1277–96.

27. Präg A, Grüning BA, Häckh M, Lüdeke S, Wilde M, Luzhetskyy A, et al. Regio-
and stereoselective intermolecular oxidative phenol coupling in
Streptomyces. J Am Chem Soc. 2014;136(17):6195–8.

28. Galaxy Tool Shed Repository “find_genes_located_nearby_workflow”:
https://toolshed.g2.bx.psu.edu/view/bgruening/find_genes_located_
nearby_workflow/

29. myExperiment Galaxy workflow for the identification of candidate genes
clusters: http://www.myexperiment.org/workflows/4584.html

30. Jagtap PD, Johnson JE, Onsongo G, Sadler FW, Murray K, Wang Y, et al.
Flexible and accessible workflows for improved proteogenomic analysis
using the Galaxy framework. J Proteome Res. 2014;13(12):5898–908.

31. Travis CI Galaxy code and wrappers: https://travis-ci.org/peterjc/galaxy_blast
32. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ File

Format for Sequences with Quality Scores, and the Solexa/Illumina FASTQ
Variants. Nucleic Acids Res. 2010;38(6):1767–71.

33. Grüning B, Cock PJA. docker-galaxy-blast: The NCBI Blast + 2.2.29 release.
2015. doi:10.5281/zenodo.15781.

34. NCBI BLAST databases: ftp://ftp.ncbi.nlm.nih.gov/blast/db/
35. Blankenberg D, Johnson JE, Taylor J, Nekrutenko A, The Galaxy Team.

Wrangling Galaxy’s reference data. Bioinformatics. 2014;30(13):1917–9.
36. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.

Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997;25(17):3389–409.

37. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, et al.
Improving the accuracy of PSI-BLAST protein database searches with
composition-based statistics and other refinements. Nucleic Acids Res.
2001;29(14):2994–3005.

38. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the
fly. Nucleic Acids Res. 2004;32 suppl 2:W327–31.

39. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-
Scott C, et al. CDD: a Conserved Domain Database for the functional
annotation of proteins. Nucleic Acids Res. 2011;39 suppl 1:D225–9.

40. Goecks J, Eberhard C, Too T, Nekrutenko A, Taylor J, The Galaxy Team. Web-
based visual analysis for high-throughput genomics. BMC Genomics.
2013;14:397.

41. Cock PJA, Chilton JM, Grüning B, Johnson JE, Soranzo N. Supporting data
and materials for “NCBI BLAST+ integrated into Galaxy”. GigaScience
Database. 2015. http://dx.doi.org/10.5524/100149

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Cock et al. GigaScience (2015) 4:39

7

http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1002/0471142727.mb1910s89
https://toolshed.g2.bx.psu.edu/view/peterjc/clc_assembly_cell/
https://toolshed.g2.bx.psu.edu/view/peterjc/clc_assembly_cell/
https://toolshed.g2.bx.psu.edu/view/peterjc/blast_top_hit_species/
https://toolshed.g2.bx.psu.edu/view/peterjc/blast_top_hit_species/
http://www.myexperiment.org/workflows/4637.html
http://www.myexperiment.org/workflows/4637.html
http://phenomena.nationalgeographic.com/2015/02/10/theres-no-plague-on-the-nyc-subway-no-platypuses-either/
http://phenomena.nationalgeographic.com/2015/02/10/theres-no-plague-on-the-nyc-subway-no-platypuses-either/
https://toolshed.g2.bx.psu.edu/view/peterjc/seq_filter_by_id/
https://toolshed.g2.bx.psu.edu/view/peterjc/seq_filter_by_id/
https://toolshed.g2.bx.psu.edu/view/bgruening/find_genes_located_nearby_workflow/
https://toolshed.g2.bx.psu.edu/view/bgruening/find_genes_located_nearby_workflow/
http://www.myexperiment.org/workflows/4584.html
https://travis-ci.org/peterjc/galaxy_blast
http://dx.doi.org/10.5281/zenodo.15781
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://dx.doi.org/10.5524/100149

	Abstract
	Background
	Findings
	Conclusions

	Findings
	Background
	Applications
	Assessing a de novo assembly
	Finding genes of interest in a de novo assembly
	Identifying candidate gene clusters
	Identifying novel proteins
	Implementation

	Discussion

	Availability and requirements
	Availability of supporting data
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

