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Abstract

“A picture is worth a thousand words.” This widely used adage sums up in a few words the notion that a successful
visual representation of a concept should enable easy and rapid absorption of large amounts of information.
Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be
enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest
generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity
can make these datasets incomprehensible without effective visualization methods. Here we discuss the past,
present and future of genomic and systems biology visualization. We briefly comment on many visualization and
analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that
enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the
future human-computer interaction trends that would enable for enhancing visualization further.
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Introduction

In the current ‘big data’ era [1], the magnitude of data
explosion in life science research is undeniable. The bio-
medical literature currently includes about 27 million
abstracts in PubMed and about 3.5 million full text arti-
cles in PubMed Central. Additionally, there are more
than 300 established biological databases that store in-
formation about various biological entities (bioentities)
and their associations. Obvious examples include: dis-
eases, proteins, genes, chemicals, pathways, small mole-
cules, ontologies, sequences, structures and expression
data. In the past 250 years, only 1.2 million eukaryotic
species (out of the approximately 8.8 million that are es-
timated to be present on earth) [2] have been identified
and taxonomically classified in the Catalog of Life and
the World Register of Marine Species [3]. The sequen-
cing of the first human genome (2002) took 13 years
and cost over $3 million to complete. Although the cost
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for de novo assembly of a new genome to acceptable
coverage is still high, probably at least $40,000, we can
now resequence a human genome for $1000 and can
generate more than 320 genomes per week [4]. Notably,
few species have been fully sequenced, and a large frac-
tion of their gene function is not fully understood or still
remains completely unknown [5]. The human genome is
3.3 billion base pairs in length and consists of over
20,000 human coding genes organized into 23 pairs of
chromosomes [6, 7]. Today over 60,000 solved protein
structures are hosted in the Protein Data Bank [8].
Nevertheless, many of the protein functions remain un-
known or are partially understood.

Shifting away from basic research to applied sciences,
personalized medicine is on the cusp of a revolution
allowing the customization of healthcare by tailoring
decisions, practices and/or products to the individual pa-
tient. To this end, such information should be accom-
panied by medical history and digital images and should
guarantee a high level of privacy. The efficiency and se-
curity of distributed cloud computing systems for medical
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health record organization, storage and handling will be
one of the big challenges during the coming years.
Information overload, data interconnectivity, high di-
mensionality of data and pattern extraction also pose
major hurdles. Visualization is one way of coping with
such data complexity. Implementation of efficient visua-
lization technologies is necessary not only to present the
known but to also reveal the unknown, allowing inference

of conclusions, ideas and concepts [9]. Here we focus on
visualization advances in the fields of network and systems
biology, present the state-of-the-art tools and provide an
overview of the technological advances over time, gaining
insights into what to expect in the future of visualization
in the life sciences.

In the section on network biology below, we discuss
widely used tools related to graph visualization and
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Fig. 1 Visualization for network biology. a Timeline of the emergence of relevant technologies and concepts. b A simple drawing of an undirected
unweighted graph. ¢ A 2D representation of a yeast protein-protein interaction network visualized in Cytoscape (left) and potential protein complexes
identified by the MCL algorithm from that network (right). d A 3D view of a protein-protein interaction network visualized by BiolayoutExpress=".
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navigation and control of networks by hand gestures. j Integration and control of 3D networks using VR devices
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Table 1 Visualization tools for network biology

Standalone applications for network analysis

Tool and references

Description

URL

Arena 3D [54, 55]
Biana [146]

BioLayout Express 3D [147]
BiologicalNetworks [148, 149]

BioMiner [150]

Cell lllustrator [151]
COPASI [152]
Cytoscape [48, 153]
Dizzy [154]
DyCoNet [155]

GENeVis [156, 157]
GEPHI [49]

Igraph [158]

Medusa [159, 160]
NAViGaTOR [161, 162]
N-Browse [163]

NeAT [33]

Ondex [47]

Osprey [38]

Pajek [37]

PathwayAssist [164]

PIVOT [165]

ProCope [166]

ProViz [167]

SpectralNET [168]

Tulip [169]

VANESA [170]

VANTED [171]

yEd

3D visualization of multi-layer networks
Data integration and network management
2D/3D network visualization

Efficient integrated multi-level analysis of microarray,
sequence, regulatory and other data

Modeling, analyzing and visualizing biochemical
pathways and networks

Petri nets for modeling and simulating biological networks
Analysis of biochemical networks and their dynamics
Network visualization and analysis. Over 200 plugins [60]
Chemical kinetics stochastic simulation software

Gephi plugin that can be used to identify dynamic
communities in networks

Network and pathway visualization

Interactive visualization and exploration for any network
and complex system, dynamic and hierarchical graph.

Collection of network analysis tools with the emphasis
on efficiency, portability and ease of use

Semantic and multi-edged simple networks

Visualizing and analyzing protein-protein interaction networks
Interactive graphical browser for biological networks
Topological and clustering analysis of networks

Data integration and visualization of large networks
Visualization and annotation of biological networks

Analysis and visualization of large networks and social
network analysis

Navigation and analysis of biological pathways, gene
regulation networks and protein interaction maps.

Layout algorithms for visualizing protein interactions
and families

Prediction and evaluation of protein complexes from
purification data experiments

Visualization and exploration of interaction networks.
Gene Ontology and PSI-MI formats supported

Network analysis and visualizations. Scatter plots and
dimensionality reduction algorithms

Enables the development of algorithms, visual encodings,
interaction techniques, data models and
domain-specific visualizations

Automatic reconstruction and analysis of biological networks
and Petri nets based on life-science database information

Network reconstruction, data visualization, integration of
various data types, network simulation

Creation of diagrams manually and import external data

http://www.arena3d.org
http://sbi.imim.es/web/BIANA.php
http://www biolayout.org/

http://www.biologicalnetworks.org

http://www .zbi.uni-saarland.de/chair/projects/BioMiner

http://www.cellillustrator.com
http://www.copasi.org/
http://www.cytoscape.org/
http://magnet.systemsbiology.net/software/Dizzy/
https://github.com/juliemkauffman/DyCoNet

http://tinyurl.com/genevis/
https://gephi.org

http://igraph.sourceforge.net

https://sites.google.com/site/medusa3visualization/
http://tinyurl.com/navigator1/
http://www.gnetbrowse.org/
http://rsatulb.acbe/neat/

http://www.ondex.org/
http://biodata.mshri.on.ca/osprey/servlet/Index

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.ariadnegenomics.com/downloads/
http://acgt.cs.tau.ac.il/pivot/
http://www.bio.ifilmu.de/Complexes/ProCope/
http://cbilabrifr/eng/provizhtm
https://www.broadinstitute.org/software/spectralnet

http://tulip.labrifr/TulipDrupal/

http://agbitechfak.uni-bielefeld.de/vanesa/
http://tinyurl.com/vanted/

http://tinyurl.com/yEdGraph/
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Table 1 Visualization tools for network biology (Continued)

Web tools for network analysis

APID [172]

Arcadia [173]

AVIS [174]
bioPIXIE [175]

CellPublisher [176]
Graphle [177]

GraphWeb [178]
Hubba [179]

NetworkBLAST [180]

Pathview [181]
PINA [182]

ReMatch [183]

SNOW [184]

STITCH [185]

STRING [186]

TVNViewer [187]

tYNA [188]

VisANT [39, 189]

Unified protein-protein interactions from BIND, BioGRID,
DIP, HPRD, IntAct and MINT

Translates text-based descriptions of biological
networks (SBML files) into standardized diagrams
(Systems Biology Graphical Notation Process
Description maps)

Viewer for signaling networks

Discovery of biological networks from diverse
functional genomic data

Interactive representations of biochemical processes

Distributed network exploration and visualization
of interactive large, dense graphs

Web server for graph-based analysis of biological networks

Web-based service to explore the essential nodes
in a network

Analysis of protein interaction networks across species
to infer protein complexes that are conserved in evolution

Tool set for pathway-based data integration and visualization

Integrated platform for protein interaction network
construction, filtering, analysis, visualization and management

Web-based tool for integration of user-given stoichiometric
metabolic models into a database collected from
public data sources

Gene mapping on a reference or human protein-protein
interaction network that SNOW hosts

Resource to explore known and predicted interactions
of chemicals and proteins

Protein interaction networks and integration of data
such as genomic context, high-throughput experiments,
conserved coexpression and previous knowledge
derived from the literature

An interactive visualization tool for exploring networks
that change over time or space

System for managing, comparing and mining
multiple networks

Visualization, mining, analysis and modeling of biological
networks, metabolic networks and ecosystems

http://bicinfow.dep.usal.es/apid/

http://arcadiapathways.sourceforge.net/

http://actin.pharm.mssm.edu/AVIS2
http://pixie.princeton.edu/pixie

http://cellpublisher.gobics.de/
http://tinyurl.com/graphle/

http://biit.cs.ut.ee/graphweb/
http://hubiiis.sinica.edu.tw/Hubba

http://www.cs.tau.ac.il/~bnet/networkblast.htm

http://Pathview.r-forge.r-project.org/

http://cbg.garvan.unsw.edu.au/pina/home.do

http//www.cs.helsinki fi/group/sysfys/software/rematch/

http://snow.bioinfo.cipf.es

http://stitch.embl.de/

http://string-db.org

http//www.sailing.cs.cmu.edu/main/?page_id=545
http://tyna.gersteinlab.org/tyna/

http://visant.bu.edu/

analysis, we comment on the various network types that
often appear in the field of biology and we summarize
the strengths of the tools, along with their citation
trends over time. In this section we also distinguish be-
tween tools for network analysis and tools designed for
pathway analysis and visualization. In a section on gen-
omic visualization, we follow the same approach by dis-
tinguishing between tools designed for genome browsing
and visualization, genome assembly, genome alignments
and genome comparisons. Finally, in a section on
visualization and analysis of expression data, we distin-
guish between tree viewers and tools implemented for
multivariate analysis.

Network biology visualization

In the field of systems biology, we often meet network
representations in which bioentities are interconnected
with each other. In such graphs, each node represents a
bioentity and edges (connections) represent the associa-
tions between them [10]. These graphs can be weighted,
unweighted, directed or undirected. Among the various
networks types within the field, some of the most widely
used are protein-protein interaction networks, literature-
based co-occurrence networks, metabolic/biochemical, sig-
nal transduction, gene regulatory and gene co-expression
networks [11-13]. As new technological advances and
high-throughput techniques come to the forefront every
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few years, such networks can increase dramatically in size
and complexity, and therefore more efficient algorithms
for analysis and visualization are necessary. Notably, a net-
work consisting of a hundred nodes and connections is
incomprehensible and impossible for a human to visually

analyze. For example, techniques such as tandem affinity
purification (TAP) [14], yeast two hybrid (Y2H) [15] and
mass spectrometry [16] can nowadays generate a signifi-
cant fraction of the physical interactions of a proteome. As
network biology evolves over time, we indicate standard

Table 2 Visualization tools for pathways

Standalone applications

Tool and references

Description

URL

BiNA [190]

BioTapestry [191]

Caleydo [192]

CellDesigner [193]

Edinburgh Pathway Editor [194]

GenMAPP [195]

Ingenuity IPA
JDesigner [196]

KaPPA View [197]
KEGG Atlas [198]
Omix [199]
PathVisio [52]

VitaPad [200]

Web tools for pathways
ArrayXPath [201]

GEPAT [202]

iPath [50, 203]

Kegg-Based Viewer [204]
MapMan [61]

MetPA [205]

Omics Viewer [206]

Pathway Explorer [207]

Pathway projector [208]

PATIKA [51]

Reactome SkyPainter [62]
WikiPathways [209]

Drawings of metabolic networks supporting hiding of cofactors and
drawing of chemical structures

Interactive tool for building, visualizing and sharing gene regulatory
network models over the web

Visual analysis framework targeted at biomolecular data. Visualization of
interdependencies between multiple datasets

A modeling tool for biochemical networks

Edit and draw pathway diagrams

Visualization of gene expression and other genomic data on maps
representing biological pathways and groupings of genes

Data integration platform and manually annotated pathways

Graphical modeling environment for biochemical reaction networks

Plant pathways
Interactive Kyoto Encyclopedia of Genes and Genomes pathways
Visualizing multi-omics data in metabolic networks

Biological pathway analysis software that allows drawing, editing and
analysis of biological pathways

Application to visualize biological pathways and map experimental
data to them

Mapping and visualizing microarray gene-expression data and
integrated biological pathway resources using SVG

Integrated analysis of transcriptome data in genomic, proteomic and
metabolic contexts

Web-based tool for the visualization, analysis and customization of
pathway maps

KEGG-based pathway visualization tool for complex high-throughput data

User-driven tool that displays large datasets onto diagrams of
metabolic pathways or other processes

Analysis and visualization of metabolomic data within the biological
context of metabolic pathways

Data mapping on BioCyc pathways (collection of 5500 pathway/
genome databases)

Interactive Java drawing tool for the construction of biological
pathway diagrams in a visual way and the annotation of the
components and interactions between them

Zoomable pathway browser using KEGG atlas and Google Maps API

Integrated environment composed of a central database and a visual
editor, built around an extensive ontology and an integration framework

Visualization of over-represented pathways and reactions from gene lists

Wiki-based, open, public platform dedicated to the curation of
biological pathways by and for the scientific community

http://bina.unipax.info/

http://www biotapestry.org/

http://www.caleydo.org/

http//www.celldesigner.org/

http//epe.sourceforge.net/SourceForge/
EPEhtml

http://www.genmapp.org/

http://tinyurl.com/IngenuityPath

http://jdesigner.sourceforge.net/Site/
JDesigner.html

http://kpv.kazusa.orjp/
http//www.genome jp/kegg/
https://www.omix-visualization.com

http://www.pathvisio.org/

http://tinyurl.com/vitapad/

http://tinyurl.com/ArrayXPath/

http://gepat.sourceforge.net/

http://pathways.embl.de/

http//www.g-language.org/data/marray/
http://mapman.gabipd.org/web/guest/mapman

http://metpa.metabolomics.ca

http://www.biocyc.org/

http://genome.tugraz.at/pathwayexplorer/

pathwayexplorer_description.shtml

http//www.g-language.org/PathwayProjector/
http://www.cs.bilkent.edu.tr/~patikaweb/

http://www.reactome.org/skypainter-2

http://www.wikipathways.org/
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procedures that were developed over the past 20 years and
highlight key tools and methodologies that had a crucial
role in this maturation process (Fig. 1).

In the 1990s, two-dimensional (2D) static graph lay-
outs were developed for visualizing networks. Topo-
logical analysis, layout and clustering were pre-
calculated and results were captured in a single static
image. Clustering analysis was performed to detect cli-
ques or highly connected regions within a graph, layout
techniques such as Fruchterman-Reingold [17] were im-
plemented to place nodes in positions where the cross-
overs between the edges are minimized and topological
analysis was used for detecting important nodes of the
network such as hubs or nodes with high betweenness
centrality. The typical visual encoding consisted of using
arrows for directed graphs, adjusting the thickness of an
edge to show the importance of a connection, using the
same color for nodes that belong to the same cluster or
modifying the node’s size to show its topological fea-
tures, such as its neighbor connectivity. As integrative
biology and high-throughput techniques advanced over
the years, the necessity to move away from static images
and add interactivity and navigation for easier data ex-
ploration became clearer.

Bridging between analysis and visualization became
necessary, and tools that incorporated both increased
the standards in the field. In clustering analysis, for ex-
ample, new computational methods such as MCL [18]
and variations [19], Cfinder [20], MCODE [21], Clique
[22] and others were applied to biological networks to
find highly connected regions of importance. DECAFF
[23], SWEMODE [24] or STM [25], for example, were
developed to predict protein complexes [26] incorporat-
ing graph annotations, whereas others such as DMSP
[27], GFA [28] and MATISSE [29] were focused on
gene-expression data. Most of these algorithms were
command-line-based and only few tools such as jClust
[30], GIBA [31], ClusterMaker [32] or NeAT [33] have
been developed to integrate data in visual environments.
These aforementioned techniques along with others are
thoroughly discussed elsewhere [26, 34—36].

Although most network visualization tools are standa-
lone applications, they guarantee efficient data exploration
and the manipulation of visualization with mouse-
hovering supporting actions. Such tools are for example
the Pajek [37], Osprey [38], VisSANT [39] and others.
Next-generation visualization tools took advantage of
standard file formats such as BioPAX [40, 41], SBML [42],
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PSI-MI [43] and CellML [44]; modern, more sophisticated
layouts such as Hive-Plots [45]; and the available web
services and data integration techniques to directly retrieve
and handle information from public repositories on the fly.
Functional enrichment of genes using the Gene Ontology
(GO) repository [46] is a typical example. Among others,
current state-of-the-art tools are the Ondex [47], Cytoscape
[48] or Gephi [49], while tools such as iPath [50], PATIKA
[51], PathVisio [52] and others [53] are pathway specific.

As biological networks became larger over time, con-
sisting of thousands of nodes and connections, the so-
called ‘hairball’ effect, where many nodes are densely
connected with each other became very difficult to cope
with. A partial solution to this was to shift from 2D rep-
resentations to three-dimensional (3D) representations.
Tools such as Arena3D [54, 55] or BioLayout Express

3D [56] take advantage of 3D space to show data in a
virtual 3D universe. BioLayout Express uses whole 3D
space to visualize networks, whereas Arena3D imple-
ments a multilayered concept to present 2D networks in
a stack. Although a 2D network allows immediate visual
feedback, a 3D rendering usually requires the user to
interact more with the data in a more explorative mode,
but can help reveal interesting features potentially hid-
den in a 2D representation. Although it is debatable
whether 3D rendering is better than 2D visualization,
hardware acceleration and performance still need to be
taken into account when planning 3D visualizations
(Fig. 1).

Tables 1 and 2 present currently freely available net-
work and pathway visualization tools and their main
characteristics. However, it is not the purpose of this
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review to perform a deeper comparative analysis of all
available 2D and 3D visualization tools, as this is avail-
able elsewhere [53, 57-59]. Nevertheless, as network
biology is gaining ground over the years, we sought to
investigate the impact of the current tools in the field.
To accomplish this, we tracked the tools that appeared
after year 2000 and whose respective articles are indexed
by Scopus (Fig. 2). We chose to keep track of the cita-
tions of only the first original publication for each tool.
Although the number of citations is a reasonable indica-
tor of popularity, it can sometimes be misleading as sev-
eral tool versions appear in different articles that we
have not yet tracked. Nevertheless, some immediate con-
clusions can be reached, such as that Cytoscape seems
to be by far the biggest player for network visualization,
as it comes with more than 200 plugins [60] imple-
mented by an active module community (Fig. 1b). Simi-
larly, MapMan [61] and Reactome SkyPainter [62] are
the most used tools for pathway visualization (Fig. 2b).

Table 3 Visualization tools for genome alignments

Over the past 5 years, the data visualization field has
become more and more competitive. There is a trend
away from standalone applications towards the integration
of visualization implementations within web browsers.
Therefore, libraries and new programming languages have
been dedicated to this task (see the final section below).
The greater visibility provided by web implementation
means that advanced visualization can more easily become
available to non-experts and to the broader community.
Finally, one of the biggest visualization challenges today is
to capture the dynamics of networks and the way in which
topological properties change over time [63]. For this, mo-
tion or other sophisticated ideas, along with new human-
computer interaction (HCI) techniques, should be taken
into consideration. Although serious efforts on this are on
the way [54, 64, 65], there are still much to expect in the
future as HCI techniques and virtual reality (VR) devices
(such as Oculus Rift) become cheaper and more advanced
over time (Fig. 1).

Tool and references  Description

URL

ABySS Explorer [210]

associated metadata

BamView [211]

Interactive Java application that uses a novel graph-based
representation to display a sequence assembly and

Genome browser and annotation tool that allows visualization of

http://www.bcgsc.ca/platform/bioinfo/software/
abyss-explorer

http://www.sanger.ac.uk/resources/software/artemis/

sequence features, next-generation sequencing (NGS) data and
the results of analyses within the context of the sequence, and

also its six-frame translation
DNannotator [212]

JVM [213] Java Visual Mapping tool for NGS reads

LookSeq [214]

Annotation web toolkit for regional genomic sequences

Web-based visualization of sequences derived from multiple

http://bioapp.psych.uic.edu/DNannotator.htm

http.//www.springer.com/cda/content/document/cda_
downloaddocument/9789401792448-c2.pdf?SGWID=0-0-45-
1487072-p176815501

http://lookseq.sourceforge.net

sequencing technologies. Low- or high-depth read pileups

and easy visualization of putative single nucleotide and

structural variation

MagicViewer [215]

Visualization of short read alignment, identification of genetic

http://bicinformatics.zj.cn/magicviewer/

variation and association with annotation information of a

reference genome
MapView [216]
MultiPipMaker [217]

Alignments of huge-scale single-end and pair-end short reads

Computes alignments of similar regions in two DNA sequences.

http://omictools.com/mapview-s1367.html

http://pipmaker.bx.psu.edu/pipmaker/

The resulting alignments are summarized with a ‘percent identity

plot’ (pip)
PileLineGUI [218] Handling genome position files in NGS studies

SAMtools tview [102]

Simple and fast text alignment viewer; NGS compatible

http://sing.ei.uvigo.es/pileline/pilelineguihtml
http//www.htslib.org/

http://www.sourceforge.net/projects/sewal

http://wanglab.ucsd.edu/star/browser

SEWAL [219] Uses a locality-sensitive hashing algorithm to enumerate all
unique sequences in an entire lllumina sequencing run
STAR [220] A web-based integrated solution to management and
visualization of sequencing data
SVA [221] Software for annotating and visualizing sequenced human genomes

Viewer (IGV) [222]

Visualization of large heterogeneous datasets, providing a smooth

http://www.svaproject.org

https://www.broadinstitute.org/igv/

and intuitive user experience at all levels of genome resolution

ZOOM Lite [223] NGS data mapping and visualization software

http://biocinfor.com/zoom/lite/
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Visualization in genomics

There remain many open challenges for advanced
visualization for genome assemblies, alignments, polymor-
phisms, variations, synteny, single nucleotide polymor-
phisms (SNPs), rearrangements and annotations [66, 67].
To better follow progress in the visualization field, we first
need to follow the way in which new technologies, ques-
tions and trends have been shaped over the years (Fig. 3).

Up to the 1990s, local and global pairwise and mul-
tiple sequence alignment algorithms such as Smith-
Waterman [68], Needleman-Wunsch [69], FASTA [70]
and BLAST [71] were the focus of bioinformatics
methods development. Multiple sequence alignment
tools such as the ClustalW/Clustal X [72], MUSCLE
[73], T-Coffee [74] and others [75] used basic visualization
schemes, in which sequences were represented as strings
placed vertically in stacks. Colors were used to visually
encode base conservation and to indicate matching, non-
matching and similar nucleotides [76, 77].

Although these tools were successful for small num-
bers of nucleotide or protein sequences, a question was
raised regarding their applicability to whole-genome se-
quencing and comparison. A few years later (2002), the
Sanger (dideoxy) first generation sequencing, particularly
capillary approaches, allowed the sequencing of the first
whole human genome, consisting of about 3 billion base
pairs and over 20,000 human genes [78, 79]. Shortly after
that, second-generation (Illumina [80], Roche/454 [81],
Biosystems/SOLID [82]) and third-generation techniques
(Helicos BioSciences [83], Pacific Biosciences [84], Oxford
Nanopore [85] and Complete Genomics [86]) high-
throughput sequencing techniques [87-91] allowed the
sequencing of a transcriptome, an exome or a whole

Table 4 Visualization tools for assemblies

genome at a much lower cost and within reasonable
timeframes.

Projects such as the 1000 Genomes Project, for com-
prehensive human genetic variation analysis [92—94],
and the International HapMap Project [95-99], for the
identification of common genetic variations among
people from different countries, are just a few examples
of the data explosion that has taken place in the era of
comparative genomics, after 2005. Such large-scale
genomic datasets necessitate powerful tools to link gen-
omic data to its source genome and across genomes.
Therefore, among others [66], widely used standalone
and web-based genome browsers were dedicated to in-
formation handling, genome visualization, navigation,
exploration and integration with annotations from va-
rious repositories. At present, many specialized tools for
comparative genomic visualization are available and are
widely used.

To follow trends in the field, we summarize the tools
into four categories: genome alignment visualization tools
(Table 3); genome assembly visualization tools (Table 4);
genome browsers (Table 5); and tools to directly compare
different genomes with each other for efficient detection
of SNPs and genomic variations (Table 6). Following the
same approach used for network biology (above), we
examine the citation progress of the first article that was
published for each tool using the Scopus repository
(Fig. 4). Consed [76] and Gap [100, 101] seem to be the
most widely used assembly viewers, while SAMtools tview
[102] is the favorite tool for genomic assembly visua-
lization. In addition, the University of California, Santa
Cruz (UCSC) Genome Browser [103], Artemis [104] and
Ensembl [105, 106] seem to be the go-to genome

Tool and references Description

URL

Archive Viewer [224]

Web graphical interface to make contigs and trace data

http://www.ncbi.nlm.nih.gov/Traces/assembly/assmbrowser.cgi?

changes in the National Center for Biotechnology

Information (NCBI)

CBrowse [225]
assembly visualization and analysis

Consed [76]

ContigScape [226]
gap closing

DNASTAR Lasergene [227]
EagleView [228]

Analysis suite with an assembly package

with data integration capability

Gap [100, 101]
(Gap4 and Gapb), editing and analysis tools

SAM/BAM-based contig web browser for transcriptome

Assembly finishing package; NGS compatible

A Cytoscape plugin facilitating microbial genome

An information-rich viewer for genome assemblies

A fully developed set of DNA sequence assembly

http://biocinfolab.muohio.edu/CBrowse/

http://www.phrap.org/

http://sourceforge.net/projects/contigscape/

http://www.dnastar.com/

http://www.niehs.nih.gov/research/resources/software/
biostatistics/eagleview/

http://staden.sourceforge.net/

Hawkeye [229]

Tablet [230]

An interactive visual analytics tool for genome
assemblies. Detection of anomalies in data and
visual identification and correction of assembly errors

A lightweight, high-performance graphical viewer for
NGS assemblies and alignments

http://amos.sourceforge.net/wiki/index.php?title=Hawkeye

http://bioinf.scri.ac.uk/tablet
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Table 5 Genome browsers

Tool and references Description URL Web-based or
standalone

ABrowse [231] A customizable genome browser framework http://www.abrowse.org/ Web-based

AnnoJ [232] A web 2.0 application designed for visualizing deep http://www.annoj.org/ Web-based
sequencing data and other genome annotation data

Argo Java tool for visualizing and manually annotating http//www.broadinstitute.org/annotation/argo/ Standalone
whole genomes

Artemis [104] Browser and annotation tool that allows visualization — https://www.sanger.ac.uk/resources/software/ Standalone
of sequence features, data and the results of analyses  artemis/
within the context of the sequence, and also its
six-frame translation

CGView [233] Static and interactive graphical maps of circular https:.//www.gview.ca/wiki/GView/ Standalone
genomes using a circular layout

Combo [234] Dynamic browser to visualize alignments of whole http.//www.broadmitedu/annotation/argo/ Standalone
genomes and their associated annotations

Ensembl [105, 106] Annotation, analysis and display of vertebrates and http://www.ensembl.org/ Web-based
other eukaryotic species

Family Genome Visualizing genomes with pedigree information http://mlg.hitedu.cn/FGB/ Web-based

Browser [235]

Gaggle [236] Genome browser within an analysis framework; http://gaggle.systemsbiology.net/ Standalone
good microarray support

GBrowse [237, 238] A combination of database and interactive web http://gmod.org/wiki/Gbrowse Web-based
pages for manipulating and displaying annotations
on genomes

GenoMap [239] A circular genome data viewer http://nsato4.c.u-tokyo.acjp/old/GenoMap/ Standalone

GenoMap.html

Genome Projector [240]  Circular genome maps, traditional genome maps, http://www.g-language.org/GenomeProjector/ Web-based
plasmid maps, biochemical pathways maps and DNA
walks. Google API

GenomeView [241] Designed to visualize and manipulate a multitude of ~ http://genomeview.org/content/integration Standalone
genomics data

GenPlay [242] A multipurpose genome analyzer and browser http://www.genplay.net Standalone

IGB [243] Optimized to achieve maximum flexibility and high http://genoviz.sourceforge.net/ Standalone
quality genome visualization

IGV [222] A high-performance visualization tool for interactive http://www.broadinstitute.org/igv/ Standalone
exploration of large, integrated genomic datasets

JBrowse [244] A fast, embeddable genome browser built completely  http://jbrowse.org/ Web-based
with JavaScript and HTML5

JGI Supports live annotation; primary portal for DOE Joint  http://genome.jgi-psf.org/ Web-based
Genomics Institute genome projects

NCBI Genome An integrated application for viewing and analyzing http://www.ncbi.nlm.nih.gov/tools/gbench/ Standalone

Workbench sequence data

NCBI Map Viewer [245]  Vertically oriented viewer; integrated with NCBI http://www.ncbi.nlm.nih.gov/mapview/ Web-based
resources and tools

Phytozome [246] A comparative platform for green plant genomics http://www.phytozome.net Web-based

Savant [247] It was primarily developed for visualizing sequencing  http://compbio.cs.toronto.edu/savant Standalone
data, although it can be used to visualize almost any
genome-based sequence, point, interval or
continuous dataset

Scribl [248] An HTML5 Canvas-based graphics library for visualizing ~http://chmille4.github.com/Scribl/ Web-based
genomic data over the web

The HuRef Browser [249] A web resource for individual human genomics http://huref jcvi.org Web-based

The personal genome Visualizing functions of genetic variants http://www.pgbrowser.org/ Web-based

browser [250]
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Table 5 Genome browsers (Continued)

UCSC Cancer Genomics  Integration of clinical data http://genome-cancer.ucsc.edu/ Web-based

Browser [251, 252]

UCSC Genome Browser  Rapid linear visualization, examination and httpr//genome.ucsc.edu/cgi-bin/hgGateway Web-based

[103] querying of the data at many levels

UTGB [253] Open-source software for developing personalized http://utgenome.org/ Web-based
genome browsers that work in web browsers

X:map [254] Mappings between genomic features and http://xmap.picrman.ac.uk/ Web-based

Affymetrix microarrays

browsers, while Circos [107], VISTA [108] and c¢Bio [109]
are the most widely used tools for comparative genomics.

Although tremendous progress has been made in gen-
omic visualization and very large amounts of money
have been invested in such projects, genome browsers
[110] still need to address major problems. One of the
biggest challenges is the integration of data in different
formats (such as genomic and clinical data) as society
enters the personalized medicine era. Furthermore, navi-
gation at different resolution or granularity levels and
smooth scaling are necessary as long as simultaneous
comparisons across millions of elements [111] remains a
bottleneck. Newer infrastructure and software that allow
on-the-fly calculations both in the front end and the
back end would definitely be a step forward. Finally,
similarly to network biology, time-series data visua-
lization is one of the great challenges. For example, in a
hypothetical scenario in which it is required to follow
genomic rearrangements over time during tumor devel-
opment, time-series data visualization would be an in-
valuable tool. Motion integration and visualization using
additional dimensions could be possible solutions. Over-
all, it would be unrealistic to expect an ideal universal
genome browser that serves all the possible purposes in
the field.

Visualization and analysis of expression data

Microarrays [112] and RNA sequencing [87] are the two
main high-throughput techniques for measuring expres-
sion levels of large numbers of genes simultaneously.
Both methods are revolutionary as one can simultan-
eously monitor the effects of certain treatments, diseases
and developmental stages on gene expression across
time (Fig. 5a) and for multiple transcript isoforms. Al-
though microarrays and RNAseq technologies are com-
parable to each other [113], the latter tends to dominate,
especially as sequencing technologies have improved,
and there now are robust statistics to model the particu-
lar noise characteristics of RNAseq, particularly for low
expression [114]. Microarrays are still cheaper and in
some contexts may be more convenient as their analysis is
still simpler and requires less computing infrastructure.

In both cases, a typical analysis procedure is first to
normalize experimental and batch differences between
samples and then to identify up- and downregulated genes
based on a fold-change level when comparing across sam-
ples, such as between a healthy and a non-healthy tissue.
Statistical approaches are used to assess how reliable fold-
change measurements are for each transcript of interest
by modeling variation across transcripts and experiments.
Subsequently, functional enrichment is performed to
identify pathways and biological processes in which the
up- and downregulated genes may be involved. Although
there are numerous functional enrichment suites [115],
David [116], Panther [117] and WebGestalt [118] are
among the most widely used.

When gene expression is measured across many time
points or conditions so as to observe, for example, the ex-
pression patterns following treatment, various analyses
can be taken into consideration. Principal component ana-
lysis or partitional clustering algorithms such as k-means
[119] can be used to group together genes with similar be-
havior patterns. Scatter-plotting is the typical visualization
to represent such groupings. Thus, each point on a plane
represents a gene and the closer two genes appear, the
more similar they are (Fig. 5b, c).

When one wants to categorize genes with similar be-
havior patterns across time (Fig. 5d), hierarchical cluster-
ing based on expression correlation can be performed.
Average linkage, complete linkage, single linkage, neigh-
bor joining [120] and UPGMA [121] are the most widely
used methods. In such approaches, an all-against-all dis-
tance or correlation matrix that shows the similarities
between each pair of genes is required and genes are
placed as leaves in a tree hierarchy. The two most widely
used correlation metrics for expression data are the
Spearman and Pearson correlation metrics. A list of tree
viewers for hierarchical clustering visualization is pre-
sented in Table 7. A more advanced visualization method
is combining trees with heatmaps (Fig. 5e): genes are
grouped together according to their expression patterns in
a tree hierarchy and the heat map is a graphical represen-
tation of individual gene-expression values represented as
colors. Darker colors indicate a higher expression value
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Table 6 Visualization tools for comparative genomics

Tool and references Description URL Web-based or
standalone

ACT [255] A tool for displaying pairwise comparisons between http//www.sanger.ac.uk/Software/ACT/ Standalone
two or more DNA sequences

cBio [109] An open-access resource for interactive exploration http://cbioportal.org Web-based
of multidimensional cancer genomics datasets

Cinteny [256] Detection of syntenic regions across multiple genomes http://cinteny.cchmc.org/ Web-based
and measuring the extent of genome rearrangement
using reversal distance as a measure

Circos [107] A software package for visualizing data and information. http://mkweb.bcgsc.ca/circos Standalone
It visualizes data in a circular layout

CMap [257] A browser-based tool for the visual comparison of http://gmod.org/wiki/CMap Standalone
various maps (sequence, genetic, etc.) from any number
of species

CoGe SynMap [258] Generates a syntenic dot-plot between two organisms https://genomevolution.org/coge/SynMap.pl ~ Web-based
and identifies syntenic regions

Combo [234] Dot-plot and linked-track views. Integration of annotation http//www.broadinstitute.org/annotation/ Standalone
in both views argo/

DHPC [259] Visualization of large-scale genome sequences by mapping http://www.hpcurve.com Standalone
sequences into a 2D using the space-filling function of
Hilbert-Peano mapping

DNAPIotter [260] A Java application for generating circular and linear http.//www.sanger.ac.uk/resources/software/ Standalone
representations of genomes. Makes use of the dnaplotter/
Artemis libraries

FilooT [261] A visualization tool for exploring genomic data No URL Standalone

GBrowsesyn [262] GBrowse-based synteny browser designed to display http://gmod.org/wiki/GBrowse_syn Standalone
multiple genomes, with a central reference species
compared with two or more additional species

GenomeComp [263] A tool for summarizing, parsing and visualizing the http://www.mgc.ac.cn/GenomeComp/ Standalone
genome-wide sequence comparison results derived
from voluminous BLAST textual output

GenomeMatcher [264] A dot-plot-based viewer for DNA sequence comparison http://tinyurl.com/genomematcher/ Web-based

GenPlay Multi- A tool to compare and analyze multiple human http://genplay.einsteinyu.edu Standalone

Genome [265] genomes in a graphical interface

ggbio [266] R library to visualize particular genomic regions and http://www.bioconductor.org/packages/ Standalone
genome-wide overviews 2.11/bioc/html/ggbio.html

Gramene [267, 268] A comparative genome mapping database for grasses http://ensembl.gramene.org/genome_ Web-based
and a community resource for Oryza sativa browser/index.html

HilbertVis [269] Functions to visualize long vectors of integer data http://www.ebi.ac.uk/huber-srv/hilbert/ Standalone
by means of Hilbert curves

In-GAVsv [270] Integrative genome analysis pipeline (inGAP), which http://ingap.sourceforge.net/ Standalone
uses a Bayesian principle to detect SNPs and small
insertion/deletions (indels)

Meander [271] Hilbert plots to visually discover and explore structural https//sites.google.com/site/meanderviz/ Standalone
variations in a genome based on read-depth and
pair-end information

MEDEA [272] Genomic feature densities and genome alignments of http//www.broadinstitute.org/annotation/ Web-based
circular genomes. Comparative genomic visualization medea/
with Adobe Flash

MizBee [273] A multiscale synteny browser for exploring conservation  http//www.cs.utah.edu/~miriah/mizbee Web-based
relationships in comparative genomics data. Using
side-by-side linked views, it enables efficient data
browsing across a range of scales, from the genome
to the gene

MuSiC [274] Identifying mutational significance in cancer genomes http://gmt.genome.wustl.edu Standalone

ngs.plot [275] Quick mining and visualization of NGS data by https//github.com/shenlab-sinai/ngsplot Standalone

integrating genomic databases
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Table 6 Visualization tools for comparative genomics (Continued)

PhIGs [276] |deogram-style interactive display of orthologs
across >75 genomes
PSAT [277] A web tool to compare genomic neighborhoods of

multiple prokaryotic genomes

Seevolution [278]
of diverse genome evolution processes

Sybil [279]
gene clustered data

SynView [238]
comparative genome data

TREAT [280] A bioinformatics tool for variant annotations and

visualizations in targeted and exome sequencing data

UCSC Genome
Browser [281]

Vanno [282]
Variant View [283]

Conservation tracks within the popular UCSC
genome browser

A visualization-aided variant annotation tool

contrast to the extensive navigation required by
currently prevalent genome browsers

VISTA [108]
comparative analysis of genomic sequences

VSV, VISTA-Dot [284, 285]  Three-scale viewer for synteny and dynamic,
interactive dot plots for whole-genome

DNA alignments

Interactive 3D environment that enables visualization

Comparative genome data, particularly protein and

A GBrowse-compatible approach to visualizing

Features an information-dense visual encoding that
provides maximal information at the overview level, in

A comprehensive suite of programs and databases for

http://phigs.org Web-based
http://www.nwrce.org/psat Web-based
http://seevolution.org Standalone
http://sybil.sourceforge.net/ Web-based
http://gmod.org/wiki/SynView Standalone
http.//ndcmayo.edu/mayo/research/biostat/ Standalone
stand-alone-packages.cfim
http.//genome.ucscedu/cgi-bin/hgGateway/ Web-based
http://cgts.cgu.edu.tw/vanno Web-based
http.//www.cs.ubc.ca/labs/imager/tr/2013/ Web-based
VariantView/

http://genome.lbl.gov/vista/index.shtml Web-based
http://genome jgi-psf.org/synteny/ Web-based

and vice versa. An even more complex visualization of a
2D hierarchical clustering is shown in Fig. 5f in which
genes are clustered based on their expression patterns
across several conditions (vertical tree on the left) and
conditions are clustered across genes (horizontal tree).
The heatmap shows the correlations between gene groups
and conditions by allowing the researcher to come to con-
clusions about whether a group of genes is affected by a
set of conditions or not. Heatmaps do, however, have sig-
nificant drawbacks with regards to color perception. Per-
ception of the color of a cell in a heatmap is shaped by the
color of the surrounding cells, so two cells with identical
color can look very different depending on their position
in the heatmap.

Although RNAseq analysis is still an active field,
microarray analysis has matured a lot over the past
15 years and many suites for analyzing such data are
currently available (Table 8). To identify the key players
in the field of microarray/RNAseq visualization we
followed the citation patterns of the available tools from
Scopus (Fig. 6). MEGA [122], ARB [123], NJplot [124],
Dendroscope [125] and iTOL [126] are the most widely
used tree viewers to visualize phylogenies and hierar-
chical clustering results. MultiExperiment Viewer [127],
Genesis [128], GenePattern [129] and EXPANDER [130]
are advanced suites that can perform various multivari-
ate analyses such as the ones discussed in this section.

Nevertheless, the commercial GeneSpring platform and
the entire R/BioConductor framework [131, 132] are
mostly used in such analyses.

Concerning the future of multivariate data visualization,
new HCI techniques and VR devices could allow parallel
visualizations, analyses and data integration simultan-
eously (Fig. 5g).

Programming languages and complementary libraries for
building visual prototypes

Although the field of biological data visualization has
been active for 25 years, it is still evolving rapidly today,
as the complexity and the size of results produced by
high-throughput approaches increase. Although most of
the current software is offered in the form of standalone
distributions, a shift towards web visualization is growing.
Important features of modern visualization tools include:
interactivity; interoperability; efficient data exploration;
quick visual data querying; smart visual adjustment for
different devices with different dimensions and resolu-
tions; fast panning; fast zooming in or out; multilayered
visualization; visual comparison of data; and smart visual
data filtering. As functions and libraries implementing
these features for standalone applications become avail-
able, similar libraries for web visualizations immediately
follow. Therefore, in this section we discuss the latest
programming languages, libraries and application


http://phigs.org
http://www.nwrce.org/psat
http://seevolution.org
http://sybil.sourceforge.net/
http://gmod.org/wiki/SynView
http://ndc.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm
http://ndc.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm
http://genome.ucsc.edu/cgi-bin/hgGateway/
http://cgts.cgu.edu.tw/vanno
http://www.cs.ubc.ca/labs/imager/tr/2013/VariantView/
http://www.cs.ubc.ca/labs/imager/tr/2013/VariantView/
http://genome.lbl.gov/vista/index.shtml
http://genome.jgi-psf.org/synteny/
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program interfaces (APIs) that automate and simplify  scope of this review to extensively describe all program-
many of the aforementioned features, enabling higher-  ming language possibilities for data visualization; there-
quality visualization implementations. It is not in the fore, we focus on the five languages that are mostly
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‘ Tree viewers ‘ ‘ Analysis and enrichment

‘ ‘ Time series ‘ ‘ Motion and dynamics A
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\ ‘ Virtual
\ \ reality
Advanced
HCI

Microarrays

‘ RNA deep sequencing ‘

L

Clustered heatmap

Time series

Fig. 5 Multivariate analyses and visualization. a Timeline of the emergence of relevant technologies and concepts. b Visualization of k-means
partitional clustering algorithm. ¢ 3D visualization of a principal component analysis. d Visualization of gene-expression measures across time using
parallel coordinates. e Visualization of gene-expression clustering across time. f 2D hierarchical clustering to visualize gene expressions against several
time points or conditions. g Hypothetical integration of analyses and expression heatmaps and the control of objects by VR devices

Virtual world

used for high-throughput biological data. Nevertheless,
Table 9 summarizes other languages, along with generic
and language-specific libraries (for R, Perl and Python),
that target specific problems and make the implementa-
tion of biological data visualization more practical.

Processing

‘Processing’ is a programming language and a develop-
ment platform for writing generative, interactive and
animated standalone applications. Basic shapes such as
lines, triangles, rectangles and ellipses, inner/outer color-
ing and basic operations such as transformations, trans-
lations, scaling and rotations can be implemented in a
single line of code and each shape can be drawn within
a canvas of a given dimension and a given refresh rate. It
is designed for easier implementations of 2D dynamic

visualizations but it also supports 3D rendering, although
not optimized. Its core library is now extended by more
than 100 other libraries and it is one of the best
documented languages in the field. The integrated devel-
opment environment allows exporting of executable files
for all Windows, MacOS and Linux operating systems as
well as Java applet jar files. Finally, it can be used as an ex-
cellent educational tool for computer programming fun-
damentals in a visual context. It is free for download, can
easily be plugged in a Java standalone application, and is
fully cooperative with the NetBeans and Eclipse environ-
ments. Code examples and tutorials can be found at [133].

Processing.js
Java applets were an easy way to run standalone applica-
tions within web browsers. This technology has now
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Table 7 Tree viewers and phylogenies

Tool and references Description

URL

ARB [123]

Bio.Phylo [286]

Dendroscope [125]

ETE Toolkit [287]

EvolView [288]

iTOL [126]

MEGA [122]
NJplot [124]

OneZoom [289]

Paloverde [290]

PhyloDraw [291]
PhyloExplorer [292]

PhyloWidget [293]

TreeDyn [294]

TreeGraph [295]

TreeQ-Vista [296]

A graphically oriented package comprising various tools
for sequence database handling and data analysis

A unified toolkit for processing, analyzing and visualizing
phylogenetic trees in Biopython

Software for visualizing phylogenetic trees and
rooted networks

Python programming toolkit that assists in the automated
manipulation, analysis and visualization of phylogenetic
and other types of trees

Tool for displaying, managing and customizing
phylogenetic trees

Online tool for the display and manipulation of
phylogenetic trees

Integrated tool for phylogenetic analysis and visualization

A tree drawing program able to draw any phylogenetic
tree expressed in the Newick phylogenetic tree format

Committed to heightening awareness about the diversity
of life on earth and its evolutionary history

3D visualization of phylogenetic structure of moderately
large trees on the scale of 100-2500 leaf nodes

Drawing tool for creating phylogenetic trees

Tool to facilitate assessment and management of
phylogenetic tree collections

Program for viewing, editing and publishing phylogenetic
trees online

TreeDyn links unique leaf labels to lists of variables/values
pairs of annotations, independently of the tree topologies

A graphical editor for phylogenetic trees that allows many
graphical formats for the elements of the tree

Designed for presenting functional annotations in a

http://www.arb-home.de/
http://biopython.org
http://ab.inf.uni-tuebingen.de/software/dendroscope/

http://etetoolkit.org/

http://www.evolgenius.info/evolview.html
http://itol.embl.de/

http://www.megasoftware.net/

http://doua.prabifr/software/njplot
http://www.onezoom.org/
http://loco.biosci.arizona.edu/paloverde/paloverde.html

http://jade.cs.pusan.ac.kr/phylodraw/

http://www.ncbi.orthomam.univ-montp2.fr/phyloexplorer/
http://www.phylowidget.org/

http://www.treedyn.org/

http://treegraph.bioinfweb.info/

http://genome.lbl.gov/vista/TreeQVista/

phylogenetic context

TreeVector [297]
Scalable Vector Graphics (SVG) files

TreeVolution [298]

Web utility to create and integrate phylogenetic trees as

Java tool to support visual analysis of phylogenetic trees

http://supfam.cs.bris.ac.uk/TreeVector/

http://vis.usal.es/treevolution

http://www.trex.ugam.ca/

T-REX [299] Web server dedicated to the reconstruction of phylogenetic
trees and reticulation networks and to the inference of
horizontal gene transfer events

ViPhy [300] Comparison of multiple phylogenetic trees

http://www.gris.tu-darmstadt.de/research/vissearch/projects/ViPhy/

mainly been abandoned because of security consider-
ations. To avoid JavaScript’s complexity and compensate
for applet limitations, Processing.js was implemented, as
the sister project of the popular Processing programming
language, to allow interactive web visualization. It is a me-
diator between HTML5 and Processing and is designed to
allow visual prototypes, digital arts, interactive animations,
educational graphs and so on to run immediately within
any HTML5-compatible browser, such as Firefox, Safari,
Chrome, Opera or Internet Explorer. No plugins are re-
quired and one can code any visualization directly in the
Processing language, include it in a web page, and let
Processing.js bridge the two technologies. Processing.js
brings the best of visual programming to the web, both

for Processing and web developers. Code examples and
tutorials can be found at [134].

D3

D3 is the main competitor of Processing/Processing.js and
has gained ground over recent years. It was initially used
to generate scalable vector graphics (SVG). Like Proces-
sing.js, it is designed for powerful interactive web visuali-
zations and it comes with its own JavaScript-like syntax. It
is a JavaScript library for manipulating document object
model objects and a programming interface for HTML,
XML and SVG. The idea behind this approach is to load
data into a browser and then generate document object
model elements based on that data. Subsequently, one can


http://www.arb-home.de/
http://biopython.org
http://ab.inf.uni-tuebingen.de/software/dendroscope/
http://etetoolkit.org/
http://www.evolgenius.info/evolview.html
http://itol.embl.de/
http://www.megasoftware.net/
http://doua.prabi.fr/software/njplot
http://www.onezoom.org/
http://loco.biosci.arizona.edu/paloverde/paloverde.html
http://jade.cs.pusan.ac.kr/phylodraw/
http://www.ncbi.orthomam.univ-montp2.fr/phyloexplorer/
http://www.phylowidget.org/
http://www.treedyn.org/
http://treegraph.bioinfweb.info/
http://genome.lbl.gov/vista/TreeQVista/
http://supfam.cs.bris.ac.uk/TreeVector/
http://vis.usal.es/treevolution
http://www.trex.uqam.ca/
http://www.gris.tu-darmstadt.de/research/vissearch/projects/ViPhy/
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Table 8 Microarray and RNAseq analysis viewers

Tool and references

Description

URL

ArrayXPath [201]

BicOverlapper [301, 302]

BiGGEsTS [303]

eRNA [304]

EXPANDER [130]

ExpressionProfiler [305]

GenePattern [129]

Genesis [128]

GeneVAND [306]
geWorkbench [307]

Gitools [308]

HCE [309]

HeatmapGenerator [310]

HeatMapViewer [311]

Mayday [312]

MultiExperiment Viewer [127]

PointCloudXplore [313]

RNASeqgBrowser [314]

RNAseqViewer [315]

TimeSearcher [316]
TraV [317]

Mapping and visualizing microarray gene-expression
data with integrated biological pathway resources using
scalable vector graphics

Supports visual analysis of gene expression by means
of biclustering

Tool providing an integrated environment for the
biclustering analysis of time-series gene-expression data

RNA data analysis tool for high-throughput RNA
sequencing experiments

A Java-based tool for analysis of gene-expression
and NGS data

Web-based platform for microarray gene-expression
and other functional-genomics-related data analysis

Modular analysis web platform; several visualization
modules available

Java package of tools to simultaneously visualize and
analyze a whole set of gene-expression experiments

Linked heatmaps, dendrograms and 2D/3D scatter plots

A Java-based open-source platform for integrated
genomics. It allows individually developed plugins to be
configured into complex bioinformatic applications.
Currently more than 70 available plugins supporting
the visualization and analysis

Analysis and visualization of genomic data using
interactive heatmaps

Linked heat map, profile and scatter plots;
systematic exploration

Create customized gene-expression heatmaps from
RNAseq and microarray data

Interactive display of microarray experiments or the
outcome of mutational studies and the study of
SNP-like sequence variants

A graphical user interface that supports the development
and integration of existing and new analysis methods.
Many linked visualizations

Analysis suite. Heatmaps, dendrograms, profile and
scatter plots

Visualization of transcription data in Drosophila embryos.
Multiple views to ease analysis of complex gene-expression
data. This type of interaction blends high-dimensional
information exploration with interactive, 3D visualization

A genome browser for simultaneous visualization of raw
strand specific RNAseq reads and UCSC genome browser
custom tracks

Visualization of the various data from the RNAseq
analyzing process, for single or multiple samples

Interactive querying and exploration of time-series data

Visualization and analysis of multiple transcriptome
sequencing experiments

http://www.snubi.org/software/ArrayXPath/

http://vis.usal.es/bicoverlapper/
http://tinyurl.com/BiGGESTS/
https://sourceforge.net/projects/erna/?source=directory
http://acgt.cs.tau.ac.il/expander/
http://www.ebi.ac.uk/expressionprofiler
http://genepattern.broadinstitute.org/gp/pages/login.jsf
http://genome.tugraz.at/genesisclient/genesisclient_
description.shtml

http://tinyurl.com/GeneVAnD/
http//wiki.c2b2.columbia.edu/workbench/index php/Home

http://www.gitools.org

http://www.cs.umd.edu/hcil/hce/

http://sourceforge.net/projects/heatmapgenerator/

http://dx.doi.org/10.5281/zenodo.7706

http://itinformatik.uni-tuebingen.de/?page_id=248/wp/

http://www.tm4.org/

http://tinyurl.com/PointCloudXplore/

http//www.australianprostatecentre.org/research/software/
rnaseqbrowser

http://bioinfo.au.tsinghua.edu.cn/software/RNAseqViewer/

http://www.cs.umd.edu/hcil/timesearcher/

http://appmibio.uni-goettingen.de/index.php?sec=serv

apply data-driven transformations on the document. This
avoids proprietary representation and affords extra-
ordinary flexibility. With minimal overhead, D3 is ex-
tremely fast and supports large datasets and dynamic

behaviors for interaction and animation. D3’s functional
style allows code reuse through a diverse collection of
components and plugins. It is extensively documented
and code examples can be found at [135].


http://www.snubi.org/software/ArrayXPath/
http://vis.usal.es/bicoverlapper/
http://tinyurl.com/BiGGEsTS/
https://sourceforge.net/projects/erna/?source=directory
http://acgt.cs.tau.ac.il/expander/
http://www.ebi.ac.uk/expressionprofiler
http://genepattern.broadinstitute.org/gp/pages/login.jsf
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://tinyurl.com/GeneVAnD/
http://wiki.c2b2.columbia.edu/workbench/index.php/Home
http://www.gitools.org/
http://www.cs.umd.edu/hcil/hce/
http://sourceforge.net/projects/heatmapgenerator/
http://dx.doi.org/10.5281/zenodo.7706
http://it.informatik.uni-tuebingen.de/?page_id=248/wp/
http://www.tm4.org/
http://tinyurl.com/PointCloudXplore/
http://www.australianprostatecentre.org/research/software/rnaseqbrowser
http://www.australianprostatecentre.org/research/software/rnaseqbrowser
http://bioinfo.au.tsinghua.edu.cn/software/RNAseqViewer/
http://www.cs.umd.edu/hcil/timesearcher/
http://appmibio.uni-goettingen.de/index.php?sec=serv
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Flash

Adobe Flash was once the industry standard for authoring
innovative, interactive content. In conjunction with the
platform’s programming language, ActionScript, Flash
allows designers to implement dynamic visualization,
opening up many possibilities for creativity. Some of the
most pioneering, best practice visualizations built in Flash
can be found with online news and media sites, introdu-
cing interactivity to supplement and enhance the presen-
tation of information. Because of the lack of support for
Flash across Apple’s suite of devices and the emergence of
competing developments, demanding less computational
power, including D3 and HTMLS5, this technology is now
fading.

Java3D

Java 3D is an API, acting as a mediator between
OpenGL and Java and enables the creation of standalone
3D graphics applications and internet-based 3D applets.
It is easy to use and provides high-level functions for
creating and manipulating 3D objects in space and their
geometry. Programmers initially create a virtual world
and then place any 3D object anywhere in this world.

Rotation in three axes, zooming in or out and translation
of the whole canvas are functions are offered by default,
and the hierarchy of the transformation groups define
the 3D transformations that can be applied individually to
an object or a set of objects. Java3D code can be compiled
under any of the Windows, MacOS and Unix Systems.

Conclusion

The future of biological data visualization

Biological data visualization is a rapidly evolving field.
Nevertheless, it is still in its infancy. Hardware acce-
leration, standardized exchangeable file formats, dimen-
sionality reduction, visual feature selection, multivariate
data analyses, interoperability, 3D rendering and visua-
lization of complex data at different resolutions are areas
in which great progress has been achieved. Additionally,
image processing combined with artificial-intelligence-
based pattern recognition, new libraries and program-
ming languages for web visualization, interactivity, visual
analytics and visual data retrieval, storing and filtering
are still ongoing efforts with remarkable advances over
the past years [58, 136, 137]. Today, many of the current
visualization tools serve as front ends for very advanced
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Table 9 Programming languages and libraries to build visual prototype

Language/Library Description URL
Adobe Edge Animated, interactive web content for projects that https://creative.adobe.com/products/animate
previously required Flash
Arbor js Efficient, force-directed layout algorithm plus abstractions http://arborjs.org/
for graph organization and screen refresh handling
Biojs BioJS enables a full-featured biological workbench http://biojs.net/
directly in your browser
Bonsai.js Lightweight graphics library with an intuitive graphics https://bonsaijs.org/
APl and an SVG renderer
Chartjs Object oriented client side graphs. Data visualization in http://www.chartjs.org/
six animated, fully customizable chart types
Cube Time-series data, built on MongoDB, Node and D3. https://square.github.io/cube/
Real-time visualizations of aggregate metrics
Cubism D3 plugin for visualizing time series https://square.github.io/cubism/
Cytoscape Web Easily embed interactive networks in your website http://cytoscapeweb.cytoscape.org/
D4 Friendly charting domain-specific language for D3 https.//github.com/heavysixer/d4
Easeljs APl to work with rich graphics and interactivity with http://www.createjs.com/Easel)S

Ember Charts

Envision
Flare

Foamtree

Highcharts,js

Infovis Toolkit
Jgrapht
Kartograph
Matplotlib
Miso

Netadvantage

Orange

Paper.js

Pivotviewer

Polychartjs

Prefuse

HTML5 Canvas

Emberjs and d3,js based time series, bar, pie and scatter
charts that are easy to extend and modify

Fast, dynamic and interactive HTML5 visualizations
Interactive data visualizations in Flash (ActionScript)

Tree map visualization with innovative layout algorithms
and animations such as Voronoi Treemaps

HTML5/JavaScript-based line, spline, area, area-spline,
column, bar, pie, scatter, angular gauges, area-range,
area-spline-range, column-range, bubble, box plot,
error bars, funnel, waterfall and polar charts

A comprehensive range of tools for creating Interactive
Data Visualizations for the Web

A free Java graph library that provides mathematical
graph-theory objects and algorithms

Kartograph is a simple and lightweight framework for
creating beautiful, interactive vector maps

A Python 2D plotting library that produces publication
quality figures

Interactive storytelling and data visualization content

Charts with a range of frameworks including asp.net
and Silverlight. Visualization options include bar, bubble,
Gantt, line, radial, scatter, spline and doughnut charts

Data mining through visual programming or Python
scripting. Components for machine learning. Add-ons
for bioinformatics and text mining. Packed with features
for data analytics

A vector graphics scripting framework that runs on top
of the HTML5 Canvas

A Silverlight control that makes it easier to interact with
massive amounts of data on the web

A JavaScript graphing library capable of producing a
wide array of graphics fairly easily

Java-based interactive data. Data structures for tables,
graphs and trees, a host of layout and visual encoding
techniques, animation, dynamic queries, integrated search
and database connectivity

http://addepar.github.io/

http://www.humblesoftware.com/envision
http://flare.prefuse.org/

http://carrotsearch.com/foamtree-overview

http://www.highcharts.com/

http://philogb.github.io/jit/
http://jgrapht.org/
http://kartograph.org/
http://matplotlib.org/
http://misoproject.com/

http://www.infragistics.com/products

http://orange.biolab.si/

http://paperjs.org/

http://www.microsoft.com/silverlight/pivotviewer/

http://www.polychartjs.com/

http://prefuse.org/


https://creative.adobe.com/products/animate
http://arborjs.org/
http://biojs.net/
https://bonsaijs.org/
http://www.chartjs.org/
https://square.github.io/cube/
https://square.github.io/cubism/
http://cytoscapeweb.cytoscape.org/
https://github.com/heavysixer/d4
http://www.createjs.com/EaselJS
http://addepar.github.io/
http://www.humblesoftware.com/envision
http://flare.prefuse.org/
http://carrotsearch.com/foamtree-overview
http://www.highcharts.com/
http://philogb.github.io/jit/
http://jgrapht.org/
http://kartograph.org/
http://matplotlib.org/
http://misoproject.com/
http://www.infragistics.com/products
http://orange.biolab.si/
http://paperjs.org/
http://www.microsoft.com/silverlight/pivotviewer/
http://www.polychartjs.com/
http://prefuse.org/
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Table 9 Programming languages and libraries to build visual prototype (Continued)

Prefuse Flare

Ractivejs

Raphael js

Rcharts

Seaborn

Shiny

Sigmajs

Threejs

Timeline,js

Variance

Vega

Vida.io

Vis

Visual Sedimentation

Visualization and animation for ActionScript. From basic
charts and graphs to complex interactive graphics. Data
management, visual encoding, animation and
interaction techniques

It transforms templates into blueprints for apps that are
interactive by default. Two-way binding, animations,
SVG support and more

JavaScript library for vector graphics on the web. To create
a specific chart or image. Crop and rotate widget

R package to create, customize and publish interactive
JavaScript visualizations from R using a familiar lattice style
plotting interface

A Python visualization library based on matplotlib. It provides
a high-level interface for drawing attractive statistical graphics

A web application framework for R to turn an analysis into
interactive web applications. No HTML, CSS or JavaScript
knowledge required

A JavaScript library dedicated to graph drawing. It makes
easy to publish networks on Web pages and allows
developers to integrate network exploration in rich

web applications

A lightweight cross-browser JavaScript library/API used to
create and display animated 3D computer graphics on a
web browser that supports WebGL

Visually rich interactive timelines, available in 40 languages

Build powerful data visualizations for the web without
writing JavaScript. Wide range of visualizations

A visualization grammar, a declarative format for creating,
saving and sharing visualization designs. Data visualizations
in JSON format and interactive views using either

HTML5 Canvas or SVG

A way to build reusable cloud visualizations: clone
visualization templates, customize without coding skills and
embed or share in the cloud

A data visualization platform designed to assist investigative
journalists, activists and others in mapping complex business
or crime networks

A JavaScript library for visualizing streaming data, inspired
by the process of physical sedimentation. jQuery (to facilitate

http://flare.prefuse.org/

http://www.ractivejs.org/

http://raphaeljs.com/

http://rcharts.io/

http://stanford.edu/~mwaskom/software/seaborn/

http://shiny.rstudio.com/

http://sigmajs.org/

http://threejs.org/

http://timeline knightlab.com/

https://variancecharts.com/

http/trifacta.github.io/vega/

https://vida.io/

http://vis.occrp.org/

http://www.visualsedimentation.org/

HTML and JavaScript development) and Box2DWeb (for physical

world simulation)
WebGL

A JavaScript API for rendering interactive 3D computer graphics

https://www .khronos.org/webgl/

and 2D graphics within any compatible web browser without

the use of plugins

infrastructures dedicated to data manipulation and have
driven significant advances in user interfaces. Although
the implementation of sophisticated graphical user inter-
faces is necessary, the effort to minimize back-end
calculations is of great importance. Unfortunately, only a
limited number of visualization tools today take advantage
of libraries designed for parallelization. Multi-threading,
for example, allows the distribution of computational
tasks in terminals over the network, and CUDA (available
on Nvidia graphic cards) allows parallel calculations at
multiple graphical processing units.

20

Despite the fact that multiple screens, light and laser
projectors and other technologies partially solve the space
limitation problem, HCI techniques are changing the rules
of the game and biological data visualization is expected
to adjust to these trends in the longer term. 3D control
can be achieved without intermediate devices such as
mouse, keyboards or touch screens [138] in modern
perceptual input systems. Sony’s EyeToy, Playstation Eye
and Artag, for example, use non-spatial computer vision
to determine hand gestures. Similarly, the Nintendo Wii
and Sony Move devices support object manipulation in


http://flare.prefuse.org/
http://www.ractivejs.org/
http://raphaeljs.com/
http://rcharts.io/
http://stanford.edu/~mwaskom/software/seaborn/
http://shiny.rstudio.com/
http://sigmajs.org/
http://threejs.org/
http://timeline.knightlab.com/
https://variancecharts.com/
http://trifacta.github.io/vega/
https://vida.io/
http://vis.occrp.org/
http://www.visualsedimentation.org/
https://www.khronos.org/webgl/
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3D space. These actions are mediated through the detec-
tion of the position in space of physical devices held by
the user or, even more impressively, through immediate
tracking of the human body or parts of the human body.
Equally impressive is the prospect of ocular tracking, one
implementation of which has recently been introduced by
the VR startup Fove. The Fove headset tracks eye move-
ment and translates into spatial movement or even other
types of action within the simulated 3D space. The re-
cently implemented Molecular Control Toolkit [139] is a
characteristic example of a new API based on the Kinect
and Leap Motion devices (which track the human body
and human fingers, respectively) to control molecular
graphics such as 3D protein structures. Moreover, large
screens, tiled arrays or VR environments should be taken
into consideration by programmers and designers as they
become more and more affordable over time. A great
benefit of such technologies is that they allow the re-
presentation of complete datasets without the need for
algorithms dedicated to dimensionality reduction, which
might lead to information loss.

VR environments are expected to bring a revolution in
biological data visualization as one could integrate meta-
bolomics networks and gene expression in virtual worlds,
as in MetNet3D [140], or create virtual universes of living
systems such as a whole cell [59, 141-144]. A visual repre-
sentation of the whole cell with its components in an im-
mense environment in which users can visually explore
the location of molecules and their interaction in space
and time could lead to a better understanding of the bio-
logical systems. Oculus Rift (which promoted the
reemergence of VR devices), Project Morpheus, Google
Cardboard, Sony Smart Eyeglass, HTC Vive, Samsung
Gear VR, Avegant Glyph, Razer OSVR, Archos VR Head-
set and Carl Zeiss VR One are state-of-the-art commercial
devices that offer VR experiences. All of them overlay the
user’s eyesight with some kind of screen and aim to
replace the field of view with a digital 3D alternative.
Between them, those devices use many technologies and
new ideas such as the monitoring of the position of the
head (allowing for more axes of movement), the substitu-
tion of the VR screen with smartphones (thus harnessing
efficient modern smartphone processors), eye tracking
and projection of images straight onto the retina.

Approaching the problem from a different angle, Google
Glass, HoloLens and Magic Leap offer an augmented real-
ity experience (the latter is rumored to achieve that by
projecting a digital light field into the user’s eye). Aug-
mented reality can facilitate the learning process of the
biological systems because it builds on exploratory learn-
ing. This allows scientists to visualize existing knowledge,
whereas the unstructured nature of augmented reality
could allow them to construct knowledge themselves by
making connections between information and their own
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experiences or intuition and thus offer novel insights to
the studied biological system [145]. Efforts such as the
Visible Cell [141] and CELLmicrocosmos have already
begun. The Visible Cell project aims to inform advanced
in silico studies of cell and molecular organization in 3D
using the mammalian cell as a unitary example of an or-
dered complex system; the CELLmicrocosmos integrative
cell modeling and stereoscopic 3D visualization project is
a typical example of the use of 3D vision.

Finally, starting from a living entity, the process of
digitizing it, visualizing it, placing it in virtual worlds or
even recreating it as a physical object using 3D printing
is no longer the realm of science fiction. Data
visualization and biological data visualization are rapidly
developing in parallel with advances in the gaming in-
dustry and HCI. These efforts are complementary and
there are already strong interactions developing between
these fields, something that is expected to become more
obvious in the future.
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